首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
An isocratic, reversed-phase high-performance liquid chromatographic procedure (HPLC) was developed for determination of the neuroprotective agent riluzole in mice plasma, brain and spinal cord. The procedure is based on isolation of the compound and the internal standard from plasma and central nervous system tissues using a Bakerbond spe C8 cartridge, with satisfactory recovery and specificity. Separation was on a C18 column, coupled with an UV detector at 263 nm. The assay was linear over a wide range, with a lower limit of quantification of 100 ng ml(-1) or g(-1) using 0.1 ml of plasma and about 100mg of brain tissue. The precision and accuracy were within the acceptable limits for an HPLC assay. The method is currently used to support pharmacological studies of the activity of riluzole when given in combination with other potential neuroprotective agents in an animal model of familiar amyotrophic lateral sclerosis (SOD1-G93A transgenic mice).  相似文献   

3.
We previously described the differential distribution of majorgangliosides (GM1, GD1a, GD1b, GT1b and GQ1b) in adult rat braindetected by specific antibodies (Kotani,M., Kawashima,I., Ozawa,I.,Terashima,T. and Tai,T. Glycobiology, 3, 137–146, 1993).We report here the distribution of minor gangliosides in theadult rat brain by an immunofluorescence technique with mousemonoclonal antibodies (MAbs). Ten MAbs (GMR6, GMB28, GMR11,GMR19, GMR2, GMR7, GGR51, AMR10, NGR54 and NGR53) that specificallyrecognize GM3, GM2, GT1a, GD3, O-Acdisialoganglioside, GD2,GM1b, GM4, IV3NeuAc  相似文献   

4.
Chen SH  Yao HW  Huang WY  Hsu KS  Lei HY  Shiau AL  Chen SH 《Journal of virology》2006,80(24):12387-12392
For decades, numerous ex vivo studies have documented that latent herpes simplex virus (HSV) reactivates efficiently from ganglia, but rarely from the central nervous systems (CNS), of mice when assayed by mincing tissues before explant culture, despite the presence of viral genomes in both sites. Here we show that 88% of mouse brain stems reactivated latent virus when they were dissociated into cell suspensions before ex vivo explant culture. The efficient reactivation of HSV from the mouse CNS was demonstrated with more than one viral strain, viral serotype, and mouse strain, further indicating that the CNS can be an authentic latency site for HSV with the potential to cause recurrent disease.  相似文献   

5.
We studied the distribution of Bis (Bcl-2 interacting death suppressor) protein in the adult rat brain and spinal cord using immunohistochemistry. Immunoreactivity was observed in specific neuronal populations in distinct nuclei. The most intensely labeled cells were associated with the motor system, including most cranial nerve motor nuclei, Purkinje cells of the cerebellum, the red nucleus, and the ventral motor neurons of the spinal cord. Bis protein was also expressed in several structures associated with the ventricular system, including the subventricular zone of the lateral ventricle and its rostral extension, in the subcommissural organ, and in tanycytes, radial glial cells in the hypothalamus. Using double-labeling techniques, Bis-immunoreactive cells in the rostral migratory stream, coexpressing Bcl-2, were confirmed as glial fibrillary acidic protein-positive astrocytes comprising the glial tubes. The widespread distribution of Bis suggests that this protein has broader functions in the adult rat central nervous system than previously thought, and that it could be associated with a particular role in the rostral migratory system.J.-H. Lee and M.-Y. Lee contributed equally to this study. This work was supported by the KOSEF through the Cell Death Disease Research Center of MRC at the Catholic University of Korea (R13-2002-005-01001-0) and the Catholic Medical Center Research Foundation grant made in the program year of 2002  相似文献   

6.
Using an antiserum generated in rabbits against synthetic galanin (GA) and the indirect immunofluorescence method, the distribution of GA-like immunoreactive cell bodies and nerve fibers was studied in the rat central nervous system (CNS) and a detailed stereotaxic atlas of GA-like neurons was prepared. GA-like immunoreactivity was widely distributed in the rat CNS. Appreciable numbers of GA-positive cell bodies were observed in the rostral cingulate and medial prefrontal cortex, the nucleus interstitialis striae terminalis, the caudate, medial preoptic, preoptic periventricular, and preoptic suprachiasmatic nuclei, the medial forebrain bundle, the supraoptic, the hypothalamic periventricular, the paraventricular, the arcuate, dorsomedial, perifornical, thalamic periventricular, anterior dorsal and lateral thalamic nuclei, medial and central amygdaloid nuclei, dorsal and ventral premamillary nuclei, at the base of the hypothalamus, in the central gray matter, the hippocampus, the dorsal and caudoventral raphe nuclei, the interpeduncular nucleus, the locus coeruleus, ventral parabrachial, solitarii and commissuralis nuclei, in the A1, C1 and A4 catechaolamine areas, the posterior area postrema and the trigeminal and dorsal root ganglia. Fibers were generally seen where cell bodies were observed. Very dense fiber bundles were noted in the septohypothalamic tract, the preoptic area, in the hypothalamus, the habenula and the thalamic periventricular nucleus, in the ventral hippocampus, parts of the reticular formation, in the locus coeruleus, the dorsal parabrachial area, the nucleus and tract of the spinal trigeminal area and the substantia gelatinosa, the superficial layers of the spinal cord and the posterior lobe of the pituitary. The localization of the GA-like immunoreactivity in the locus coeruleus suggests a partial coexistence with catecholaminergic neurons as well as a possible involvement of the GA-like peptide in a neuroregulatory role.  相似文献   

7.
Recent discoveries in nuclear reprogramming have challenged the dogma that the identity of terminally differentiated cells cannot be changed. The identification of molecular mechanisms that reprogram differentiated cells to a new identity carries profound implications for regenerative medicine across organ systems. The central nervous system (CNS) has historically been considered to be largely immutable. However, recent studies indicate that even the adult CNS is imparted with the potential to change under the appropriate stimuli. Here, we review current knowledge regarding the capability of distinct cells within the CNS to reprogram their identity and consider the role of developmental signals in directing these cell fate decisions. Finally, we discuss the progress and current challenges of using developmental signals to precisely direct the generation of individual neuronal subtypes in the postnatal CNS and in the dish.  相似文献   

8.
Gap junctions are widely expressed in the various cell types of the central nervous system. These specialized membrane intercellular junctions provide the morphological support for direct electrical and biochemical communication between adjacent cells. This intercellular coupling is controlled by neurotransmitters and other endogenous compounds produced and released in basal as well as in pathological situations. Changes in the expression and the function of connexins are associated with number of brain pathologies and lesions suggesting that they could contribute to the expansion of brain damages. The purpose of this review is to summarize data presently available concerning gap junctions and the expression and function of connexins in different cell types of the central nervous system and to present their physiopathological relevance in three major brain dysfunctions: inflammation, epilepsy and ischemia.  相似文献   

9.
10.
Within the nervous system, heparan sulfate (HS) of the cell surface and extracellular matrix influences developmental, physiologic and pathologic processes. HS is a functionally diverse polysaccharide that employs motifs of sulfate groups to selectively bind and modulate various effector proteins. Specific HS activities are modulated by 3-O-sulfated glucosamine residues, which are generated by a family of seven 3-O-sulfotransferases (3-OSTs). Most isoforms we herein designate as gD-type 3-OSTs because they generate HS(gD+), 3-O-sulfated motifs that bind the gD envelope protein of herpes simplex virus 1 (HSV-1) and thereby mediate viral cellular entry. Certain gD-type isoforms are anticipated to modulate neurobiologic events because a Drosophila gD-type 3-OST is essential for a conserved neurogenic signaling pathway regulated by Notch. Information about 3-OST isoforms expressed in the nervous system of mammals is incomplete. Here, we identify the 3-OST isoforms having properties compatible with their participation in neurobiologic events. We show that 3-OST-2 and 3-OST-4 are principal isoforms of brain. We find these are gD-type enzymes, as they produce products similar to a prototypical gD-type isoform, and they can modify HS to generate receptors for HSV-1 entry into cells. Therefore, 3-OST-2 and 3-OST-4 catalyze modifications similar or identical to those made by the Drosophila gD-type 3-OST that has a role in regulating Notch signaling. We also find that 3-OST-2 and 3-OST-4 are the predominant isoforms expressed in neurons of the trigeminal ganglion, and 3-OST-2/4-type 3-O-sulfated residues occur in this ganglion and in select brain regions. Thus, 3-OST-2 and 3-OST-4 are the major neural gD-type 3-OSTs, and so are prime candidates for participating in HS-dependent neurobiologic events.  相似文献   

11.
Neural processing occurs in parallel in distant cortical areas even for simple perceptual tasks. Associated cognitive binding is believed to occur through the interareal synchronization of rhythmic activity in the gamma (30-80 Hz) range. Such oscillations arise as an emergent property of the neuronal network and require conventional chemical neurotransmission. To test the potential role of gap junction-mediated electrical signaling in this network property, we generated mice lacking connexin 36, the major neuronal connexin. Here we show that the loss of this protein disrupts gamma frequency network oscillations in vitro but leaves high frequency (150 Hz) rhythms, which may involve gap junctions between principal cells (Schmitz et al., 2001), unaffected. Thus, specific connexins differentially deployed throughout cortical networks are likely to regulate different functional aspects of neuronal information processing in the mature brain.  相似文献   

12.
Approach to regions occupied by perikarya of the snail 5-HT-ergic neurons produced excitation. The strongest action was recorded on the PedA cluster surface, and it was further enhanced by adding the 5-HT precursor. The findings suggest that the mechanisms underlying 5-HT-dependent behaviour include a mutual excitatory co-operation between somata of neighbouring 5-HT-ergic neurons.  相似文献   

13.
To better understand the functional role of EphA5 in the adult human central nervous system (CNS), we performed an immunohistochemical mapping study. EphA5, like other members of the Elk/Eph family of receptor tyrosine kinases, was widely distributed in CNS neurons. However, the distribution of the neuronal staining was not uniform. The abundance of stained neurons appeared to increase from the forebrain to the hindbrain and spinal cord. Glial and endothelial tissue was unstained. These findings are consistent with the existence of receptor and ligand gradients in different brain regions. The localization of EphA5 to motor and sensory neurons is consistent with a role of EphA5 in neural plasticity, cell-cell recognition, and topographical orientation of neuronal systems.  相似文献   

14.
Saito T 《Nature protocols》2006,1(3):1552-1558
This protocol describes a basic method for in vivo electroporation in the nervous system of embryonic mice. Delivery of electric pulses following microinjection of DNA into the brain ventricle or the spinal cord central canal enables efficient transfection of genes into the nervous system. Transfection is facilitated by forceps-type electrodes, which hold the uterus and/or the yolk sac containing the embryo. More than ten embryos in a single pregnant mouse can be operated on within 30 min. More than 90% of operated embryos survive and more than 90% of these survivors express the transfected genes appropriately. Gene expression in neurons persists for a long time, even at postnatal stages, after electroporation. Thus, this method could be used to analyze roles of genes not only in embryonic development but also in higher order function of the nervous system, such as learning.  相似文献   

15.
Frizzled transmembrane proteins (Fzd) are receptors of Wnts, and they play key roles during central nervous system (CNS) development in vertebrates. Here we report the expression pattern of Frizzled10 in mouse CNS from embryonic stages to adulthood. Frizzled10 is expressed strongly at embryonic days E8.5 and E9.5 in the neural tube and tail bud. At E10.5, Frizzled10 is expressed in the forebrain vesicle, the fourth ventricle and the dorsal spinal cord. From E12.5 to E16.5, Frizzled10 expression is mainly observed in the cortical hem/fimbria, the neuroepithelium of the third ventricular zone, midbrain, developing cerebellum, and dorsal spinal cord. At P0, with the exception of expression in the fimbria, Frizzled10 mRNA expression is limited to specific nuclei including the ventral posterior thalamic nucleus (VP) and the dorsal lateral geniculate nucleus (DLG) in the developing thalamus as well as in the proliferative ventricular zone of the developing cerebellum. From P20 to adult, Frizzled10 mRNA is detected only in the internal capsule (ic). Our data show that expression of Frizzled10 is very strong during embryonic development of the CNS and suggest that Frizzled10 may play an essential role in spatial and temporal regulation during neural development.  相似文献   

16.
Summary Brain, corpora cardiaca (CC)-corpora allata (CA) complex, suboesophageal ganglion, thoracic and abdominal ganglia of adults, larvae and embryos of Locusta migratoria have been immunohistochemically screened for gastrin cholecystokinin (CCK-8(s))-like material. In adult, numerous immunoreactive neurons and nerve fibres are located, with a marked symmetry, in various parts of the brain and throughout the ventral nerve cord. In the median part of the brain, cell bodies belonging neither to cellular type A1 nor A2 (following Victoria blue-paraldehyde fuchsin staining) are immunopositive; their processes terminate in the upper protocerebral neuropile. In lateral parts of the brain, external cell bodies send axons into CC and some up to CA, other internal have processes which terminate in the neuropile of the brain. Two of these latter cells react also with methionine-enkephalin antiserum. In the ventral nerve cord, in addition to numerous perikarya, immunore-active arborizations terminate in the neuropile or in close association with the sheath, at the dorsal part of all ganglia.This CCK-8(s) distribution pattern is observed only at the two last larval instars, but is precociously detected in the abdominal nerve cord of embryos, one day before hatching.  相似文献   

17.
Brain, corpora cardiaca (CC)-corpora allata (CA) complex, suboesophageal ganglion, thoracic and abdominal ganglia of adults, larvae and embryos of Locusta migratoria have been immunohistochemically screened for gastrin cholecystokinin (CCK-8(s]-like material. In adult, numerous immunoreactive neurons and nerve fibres are located, with a marked symmetry, in various parts of the brain and throughout the ventral nerve cord. In the median part of the brain, cell bodies belonging neither to cellular type A1 nor A2 (following Victoria blue-paraldehyde fuchsin staining) are immunopositive; their processes terminate in the upper protocerebral neuropile. In lateral parts of the brain, external cell bodies send axons into CC and some up to CA, other internal have processes which terminate in the neuropile of the brain. Two of these latter cells react also with methionine-enkephalin antiserum. In the ventral nerve cord, in addition to numerous perikarya, immunoreactive arborizations terminate in the neuropile or in close association with the sheath, at the dorsal part of all ganglia. This CCK-8(s) distribution pattern is observed only at the two last larval instars, but is precociously detected in the abdominal nerve cord of embryos, one day before hatching.  相似文献   

18.
19.
25 neuronal tumours with a panel of antibodies were studied and it was found that vimentin was present in 15 tumours. It was also found in a few cells within rosettes. PGP 9.5 showed a somatic pattern of staining with nuclear and perinuclear positivity in 23. Neurofilament reactivity was found in 14. Retinal S-antigen was detected only in one medulloblastoma, 3/4 pineal tumours and 2/2 retinoblastomas. Reactivity, for synaptophysin was present in 2/5 medulloblastomas, 3/10 neuroblastomas and 2/2 retinoblastomas. GFAP was demonstrated in scattered tumour cells in 4/5 medulloblastomas. Two of these were the only tumours featuring bipolar differentiation whilst it was unipolar in the remainder. The significance of these findings in relation to the ontogeny of these tumours is discussed.  相似文献   

20.
Neuronal plasticity can be defined as adaptive changes in structure and function of the nervous system, an obvious example of which is the capacity to remember and learn. Long-term potentiation and long-term depression are the experimental models of memory in the central nervous system (CNS), and have been frequently utilized for the analysis of the molecular mechanisms of memory formation. Extensive studies have demonstrated that various kinases and phosphatases regulate neuronal plasticity by phosphorylating and dephosphorylating proteins essential to the basic processes of adaptive changes in the CNS. These proteins include receptors, ion channels, synaptic vesicle proteins, and nuclear proteins. Multifunctional kinases (cAMP-dependent protein kinase, Ca2+/phospholipid-dependent protein kinase, and Ca2+/calmodulin-dependent protein kinases) and phosphatases (calcineurin, protein phosphatases 1, and 2A) that specifically modulate the phosphorylation status of neuronal-signaling proteins have been shown to be required for neuronal plasticity. In general, kinases are involved in upregulation of the activity of target substrates, and phosphatases downregulate them. Although this rule is applicable in most of the cases studied, there are also a number of exceptions. A variety of regulation mechanisms via phosphorylation and dephosphorylation mediated by multiple kinases and phosphatases are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号