首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
乳腺是哺乳动物哺育子代的重要器官,其通过分泌乳汁给子代提供充足的营养物质,乳腺的健康发育对泌乳以及提高子代的存活率具有重要意义.脂肪组织是乳腺重要的组成部分,在乳腺发育和循环重构过程中,乳腺脂肪组织随之呈现规律性的形态和功能变化,乳腺脂肪组织的动态变化是乳腺循环性发育重构的重要特征.脂肪组织能够分泌特殊的"脂肪因子"调节上皮细胞的功能和乳腺的发育,并且存在与上皮细胞相互转换的潜能.本综述综合近年来乳腺脂肪组织的相关研究进展,为后续研究脂肪组织调节乳腺发育的机制提供基础数据.  相似文献   

3.
4.
受到妊娠周期的影响,乳腺组织在雌性哺乳动物一生中经历着妊娠-哺乳-退化的周期性发育变化. 在乳腺退化到再次泌乳的过程中,乳腺细胞经历凋亡和更新,从而实现乳腺组织的自我更新和修复,即乳腺重构. 重构期间乳腺在组织结构和生理过程中发生显著变化,但该过程物种间差异较大. 乳用家畜为维持泌乳,妊娠期和干奶期重叠,展示出独特的再生性乳腺重构. 再生性乳腺重构对乳畜乳腺健康和下一周期的泌乳具有重要意义,研究此过程将为后续调控乳腺自我更新和改善乳腺健康提供思路. 本综述总结了近年来动物乳腺重构的研究进展,系统归纳了影响乳腺重构的因素,包括激素、蛋白酶、细胞因子、热应激、氧化应激、光照周期等,旨在解析乳腺重构的生理机制,为精准调控该过程提供科学依据.  相似文献   

5.
H Nagasawa  M Ishida 《Life sciences》1986,39(5):389-393
As a possible step to clarify the relationship between mammary gland growth during youth and mammary tumorigenesis at advanced age, the long-term effects of the temporary stimulation of mammary gland growth at youth on spontaneous mammary tumorigenesis was studied in a high mammary tumor strain of SHN virgin mice. They received a single pituitary graft under the kidney capsule or a subcutaneous implantation of progesterone for 60 days between 30 and 90 days of age. Both treatments enhanced mammary gland growth and the effect of pituitary grafting was higher. Spontaneous mammary tumorigenesis paralleled mammary gland conditions at youth. The results indicate that the stimulation of mammary gland growth during youth enhances spontaneous mammary tumorigenesis at advanced age in mice, which is quite contrary in rats, and they explain the cause of the higher mammary tumor potential in breeders than in virgin mice.  相似文献   

6.
Zinc is essential for cell proliferation. Several human studies have shown that in breast cancer tissues, zinc concentration expressed on a per tissue weight basis is higher than that in normal breast tissues. However, the mechanisms involved are unknown. N-methyl-N-nitrosourea (MNU)-induced rat mammary tumorigenesis is one of the most widely used rodent mammary tumorigenesis models for studying human breast cancer due to their similarities in hormone dependency, pathogenesis, histological classification, and immunocytochemical markers. This study was to establish if there was an accumulation of zinc in MNU-induced rat mammary tumors and, if there was, to explore the possible mechanisms involved. Sprague-Dawley rats were sham-treated or MNU-treated (50 mg/kg; n = 12) for 100 days. In MNU-induced mammary tumors (mammary tumors), zinc concentration expressed on a per dry weight basis was 12 times of that in normal mammary glands. Moreover, the mRNA level of ZnT-1 (a transporter involved in zinc efflux) in mammary tumors was reduced by 55% as compared with that in normal mammary glands. The mRNA level of Nramp2 (a divalent cation importer) and ZnT-4 (another transporter involved in zinc efflux) was unaffected by MNU-induced mammary tumorigenesis. The mRNA and protein levels of metallothionein (a putative zinc storage protein) in mammary tumors were 1.3 and 3.5 times of that in normal mammary glands, respectively. Collectively, our observations showed that zinc is accumulated in MNU-induced rat mammary tumors and this accumulation is accompanied by an altered expression of ZnT-1 and metallothionein, suggesting that zinc homeostasis might be altered in MNU-induced rat mammary tumorigenesis. Because zinc is essential to cell proliferation and cell proliferation is increased in mammary tumors, zinc accumulation is likely a part of an integrated effort to ensure sufficient zinc supply to sustain tumor growth.  相似文献   

7.
During lactation lipoprotein lipase (LPL) is elevated in mammary tissue and depressed in adipose tissue to redirect lipids for incorporation into milk fat. The cellular origin of lipoprotein lipase in mammary tissue is thought to be the mammary epithelial cell which is the predominant cell type noticeable in the lactating gland; however, mammary adipocytes are also present. If lipoprotein lipase is produced by adipocytes in other sites of the body, then the question remains as to why mammary adipocytes have not been shown to produce lipoprotein lipase. In this study we present several lines of evidence that indicate that the mammary adipocyte is a source of LPL in the lactating mammary gland of mice. This evidence includes the absence of extracellular and intracellular lipoprotein lipase activity in two types of primary mammary epithelial cell cultures and a similarity in the changes of lipoprotein lipase activity in genital adipose tissue from nonpregnant mice and lactating mammary tissue to the nutritional state of the animal. Other evidence presented here includes strong localization of lipoprotein lipase protein and messenger RNA by fluorescence immunohistochemistry and in situ hybridization, respectively, to interstitial cells located between epithelial structures. We postulate that these interstitial cells are regressed, lipid-deleted mammary adipocytes.  相似文献   

8.
目的 :构建tPA乳腺定位表达载体 ,使其在牛乳汁中高效表达 ,观察目的基因表达的规律及其影响因素 ,为建立新型牛乳腺生物反应器提供理论基础。方法 :RT-PCR法克隆目的基因 ,通过酶切、连接、分离、纯化等方法构建含tPA-cDNA的乳腺定位表达载体 ;采用乳腺注射法将融合基因转入小鼠及牛的乳腺组织中。结果 :乳腺注射外源基因后 ,tPA可在小鼠和牛的乳汁中表达。结论 :乳腺注射法可使目的基因在乳腺组织中稳定地表达较长的时间 ,其表达量与显微注射法没有明显的差异 ,表明外源基因的表达不受转基因方法的影响。但tPA在牛乳汁中的表达量明显高于小鼠的表达量 ,提示不同动物的乳蛋白调控系统有一定的差异 ,可能受着不同的因素或调控系统的影响。  相似文献   

9.
The proliferative response of mammary gland epithelium from nonpregnant, pregnant, and lactating mice to mammary serum factor and insulin was studied in vitro. Mammary gland epiithelium from nonpregnant and lactating animals has a delayed proliferative response to mammary serum factor and insulin when compared to the response of epithelium from pregnant animals. The results show that as the animals go through pregnancy into lactation the mammary gland epithelium becomes less responsive to mammary serum factor while it retains its responsiveness to insulin. The concentration of mammary serum factor in sera from animals at various physiological stages is constant. Sera from hypophysectomized rats, on the other hand, show a 50% drop in mammary serum factor activity. This loss of activity cannot be reversed by injecting prolactin, 17-beta-estradiol, or growth hormone into the hypophysectomized animals. A hypothesis that the mammary gland is composed of two proliferative epithelial populations is developed, and the possible role of prolactin in stimulating DNA synthesis is discussed.  相似文献   

10.
Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D β-geo (CDβgeo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CDβgeo cells and that the mitogen activated protein kinase signaling pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG−/− mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro.  相似文献   

11.
The capacity of any portion of the murine mammary gland to produce a complete functional mammary outgrowth upon transplantation to an epithelium-divested fat pad is unaffected by the age or reproductive history of the donor. Likewise, through serial transplantations, no loss of potency is detected when compared to similar transplantations of the youngest mammary tissue tested. This demonstrates that stem cell activity is maintained intact throughout the lifetime of the animal despite aging and the repeated expansion and depletion of the mammary epithelium through multiple rounds of pregnancy, lactation and involution. These facts support the contention that mammary stem cells reside in protected tissue locales (niches), where their reproductive potency remains essentially unchanged through life. Disruption of the tissue, to produce dispersed cells results in the desecration of the protection afforded by the “niche” and leads to a reduced capacity of dispersed epithelial cells (in terms of the number transplanted) to recapitulate complete functional mammary structures. Our studies demonstrate that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary cells may be sequestered and reprogrammed to perform mammary epithelial cell functions including those ascribed to mammary stem/progenitor cells.  相似文献   

12.
Mouse mammary tumor virus (MMTV) expression is associated with hyperplastic alveolar growth and subsequent development of mammary cancers in the mouse. The expression of this virus is also controlled by factors involved in the normal proliferation and differentiation of the mammary epithelium. During pregnancy when the mammary gland undergoes massive proliferation, MMTV expression is increased. Steroid hormones and growth factors that play an important role in the proliferation of mammary gland cells are responsible for the increased MMTV expression. In sarcomatous transformation of mouse mammary epithelial cells, MMTV expression is repressed. This repression is due to negative control of MMTV expression by transforming growth factor-beta (TGF beta). This growth factor is produced in high amounts when mammary epithelial cells progress into the transformed state. The expression of MMTV is therefore under multiple control by steroid hormones and growth factors.  相似文献   

13.
The interaction between mammary epithelial and stromal tissue is considered to be important in breast tissue development. In this study, we developed a transplantation procedure for the mammary stromal fibroblastic cell line (MSF) to examine its life in vivo. First we established MSF cells which stably expressed lacZ (lacZ/MSF) and had characteristics of mammary stromal cells. The lacZ/MSF cells were then transplanted into a cleared mammary fat pad of syngenic mice with and without mammary primary epithelial organoids. Whole mount X-gal and carmine staining of the transplants revealed that a number of undifferentiated lacZ/MSF cells survived around the mammary epithelial tissue when transplanted with organoids. These results indicate that transplantation of MSF cells into mammary fat pad was accomplished by co-transplantation with primary mammary organoids. Finally, we discuss the application of transplantation procedure for in vivo studies of the mammary stromal tissue development and stromal-epithelial interactions.  相似文献   

14.
Little is known about the transport of iron into the mammary secretory cell and the process of milk iron secretion. The concentration of iron in milk is remarkably unaffected by maternal iron status, suggesting that the uptake of iron into the mammary gland is regulated. It is known that iron enters other cells via transferrin receptor-mediated endocytosis. This study was designed to isolate and characterize the mammary gland transferrin receptor in lactating rat mammary tissue using immunochemical techniques. The existence of functional mammary gland transferrin receptors in lactating rodents was demonstrated using radiolabel-binding techniques. Isolation of mammary transferrin receptors by affinity chromatography was confirmed using immunoelectrophoresis and slot blot analysis. The intact transferrin receptor was found to have a molecular weight of 176 kd as determined by Western blotting followed by scanning densitometry. Reduction of the receptor with beta-mercaptoethanol gave a molecular weight of 98 kd. An additional immunoreactive band of 135 kd was observed. The presence of transferrin receptors in normal lactating rat mammary tissue is likely to explain iron transport into mammary tissue for both cellular metabolism and milk iron secretion.  相似文献   

15.
The capacity of any portion of the murine mammary gland to produce a complete functional mammary outgrowth upon transplantation to an epithelium-divested fat pad is unaffected by the age or reproductive history of the donor. Likewise, through serial transplantations, no loss of potency is detected when compared to similar transplantations of the youngest mammary tissue tested. This demonstrates that stem cell activity is maintained intact throughout the lifetime of the animal despite aging and the repeated expansion and depletion of the mammary epithelium through multiple rounds of pregnancy, lactation and involution. These facts support the contention that mammary stem cells reside in protected tissue locales (niches), where their reproductive potency remains essentially unchanged through life. Disruption of the tissue, to produce dispersed cells results in the desecration of the protection afforded by the "niche" and leads to a reduced capacity of dispersed epithelial cells (in terms of the number transplanted) to recapitulate complete functional mammary structures. Our studies demonstrate that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary cells, including mouse and human cancer cells, may be sequestered and reprogrammed to perform mammary epithelial cell functions including those ascribed to mammary stem/progenitor cells.  相似文献   

16.
17.
Epidermal growth factor (EGF) is known to stimulate mammary epithelial proliferation, has been identified in milk and is expressed in lactating mammary epithelia. This study examined hormonal control of EGF mRNA in mammary glands of mice. Prepro-EGF mRNA (4.7 kb) was detected during lactation (and increased significantly during this period), whereas a smaller EGF-like RNA (.5 kb) was at highest levels in mammary glands of virgin and pregnant mice. The 4.7 kb RNA was polyadenylated, whereas .5 kb RNA was not. In mammary gland organ cultures from steroid-primed mice, the combinations of insulin + hydrocortisone and insulin + prolactin + hydrocortisone increased both prepro-EGF and beta-casein mRNA expression. When hydrocortisone was present there was a decrease in mammary gland content of EGF-like RNA (.5 kb band). We conclude that prepro-EGF mRNA expression in mouse mammary tissue is under the control of the lactogenic hormones prolactin and hydrocortisone.  相似文献   

18.
Mammary gland involution is delayed by activated Akt in transgenic mice   总被引:18,自引:0,他引:18  
Activation of the antiapoptotic protein kinase Akt is induced by a number of growth factors that regulate mammary gland development. Akt is expressed during mammary gland development, and expression decreases at the onset of involution. To address Akt actions in mammary gland development, transgenic mice were generated expressing constitutively active Akt in the mammary gland under the control of the mouse mammary tumor virus (MMTV) promoter. Analysis of mammary glands from these mice reveals a delay in both involution and the onset of apoptosis. Expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), an inhibitor of matrix metalloproteinases (MMPs), is prolonged and increased in the transgenic mice, suggesting that disruption of the MMP:TIMP ratio may contribute to the delayed mammary gland involution observed in the transgenic mice.  相似文献   

19.
20.
Despite the fact that physiological evidence points to the existence of a functional Na-K-Cl cotransporter in the mammary gland, the molecular identity of this transport process remains unknown. We now show that the Na-K-Cl cotransporter isoform, NKCC1, is expressed in mammary tissue. Developmental profiling revealed that the level of NKCC1 protein was significantly influenced by the stage of mammary gland development, and immunolocalization studies demonstrated that NKCC1 was present on the basolateral membrane of mammary epithelial cells. To examine whether functional NKCC1 is required for mammary epithelial cell development, we used NKCC1 -/- mice. We demonstrate that NKCC1 -/- mammary epithelium exhibited a significant delay in ductal outgrowth and an increase in branching morphogenesis during virgin development. These effects were autonomous to the epithelium as assessed by mammary gland transplantation. Although the absence of NKCC1 had no apparent effect on gross mammary epithelial cell morphology during lactation, pups born to NKCC1 -/- mice failed to thrive. Finally, analysis of NKCC1 protein in mouse models that exhibit defects in mammary gland development demonstrate that high levels of NKCC1 protein are indicative of ductal epithelial cells, and the presence of NKCC1 protein is characteristic of mammary epithelial cell identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号