首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coenzyme Q (Q) is an obligatory component of both respiratory chain and uncoupling proteins. Also, Q acts as an antioxidant in cellular membranes. Several neurodegenerative diseases are associated with modifications of Q10 levels. For these reasons, therapies based on Q supplementation in the diet are currently studied in order to mitigate the symptoms of these diseases. However, the incorporation of exogenous Q also affects aging process in nematodes probably affecting reactive oxygen species (ROS) production. The aim of the present work is to clarify if supplementation with both Q10 and Q6 isoforms affects mitochondrial Q10 content, respiratory chain activity and ROS levels in human cells. Cells incorporated exogenously added Q10 and Q6 isoforms into mitochondria that produced changes in mitochondrial activity depending on the side chain length. Supplementation with Q10, but not with Q6, increased mitochondrial Q-dependent activities. However, Q6 affected the mitochondrial membrane potential, ROS production, and increased the protein levels of both catalase and Mn-superoxide dismutase (Mn-SOD). Also, Q6 induced a transient decrease in endogenous mitochondrial Q10 levels by increasing its catabolism. These results show that human cells supplemented with Q6 undergo a mitochondrial impairment, which is not observed with Q10 supplementation.  相似文献   

2.
OPA1, a dynamin-related guanosine triphosphatase mutated in dominant optic atrophy, is required for the fusion of mitochondria. Proteolytic cleavage by the mitochondrial processing peptidase generates long isoforms from eight messenger RNA (mRNA) splice forms, whereas further cleavages at protease sites S1 and S2 generate short forms. Using OPA1-null cells, we developed a cellular system to study how individual OPA1 splice forms function in mitochondrial fusion. Only mRNA splice forms that generate a long isoform in addition to one or more short isoforms support substantial mitochondrial fusion activity. On their own, long and short OPA1 isoforms have little activity, but, when coexpressed, they functionally complement each other. Loss of mitochondrial membrane potential destabilizes the long isoforms and enhances the cleavage of OPA1 at S1 but not S2. Cleavage at S2 is regulated by the i-AAA protease Yme1L. Our results suggest that mammalian cells have multiple pathways to control mitochondrial fusion through regulation of the spectrum of OPA1 isoforms.  相似文献   

3.
Tom40 proteins represent an essential class of molecules which facilitate translocation of unfolded proteins from the cytosol into the mitochondrial intermembrane space. They are part of a high-molecular mass complex that forms the protein-conducting channel in outer mitochondrial membranes. This study concerns the recombinant expression, purification and folding of amino-terminally truncated variants of the two human Tom40 isoforms for structural biology experiments. Both CD and FTIR secondary structure analysis revealed a dominant beta-sheet structure and a short alpha-helical part for both proteins together with a high thermal stability. Two secondary structure elements can be denatured independently. Reconstitution of the recombinant protein into planar lipid bilayers demonstrated ion channel activity similar to Tom40 purified from Neurospora crassa mitochondrial membranes, but conductivity fingerprints differ from the structurally closely related VDAC proteins.  相似文献   

4.
The specific rates of respiration of cells of wild type and four extrachromosomal mutants of Neurospora crassa were measured throughout the vegetative growth cycle. Two forms of respiration were observed: (i) cyanide sensitive; and (ii) cyanide resistant, salicyl hydroxamate sensitive. These two forms are called terminal and alternate, respectively. The former proceeds by the mitochondrial electron transfer chain and involves the cytochromes; the latter apparently proceeds by the initial portion of the electron transfer chain and does not involve cytochromes. Large and rapid changes of both the terminal and alternate respiratory activities occurred during the vegetative growth cycle. The kinetics of these changes in wild type were compared under some conditions which inhibit protein synthesis and others in which the nitrogen source was varied. The kinetics of the changes of the two forms of respiration of mutants differed from those normally exhibited by wild type, but with varied experimental conditions wild type could be made to resemble the mutants. The results of these studies are discussed in terms of a dynamic model of regulation of mitochondrial biogenesis in the coordination of the synthesis of mitochondrial proteins encoded by nuclear and mitochondrial genomes.  相似文献   

5.
In mammals, subunit c of the F1F0-ATP synthase has three isoforms (P1, P2, and P3). These isoforms differ by their cleavable mitochondrial targeting peptides, whereas the mature peptides are identical. To investigate this apparent genetic redundancy, we knocked down each of the three subunit c isoform by RNA interference in HeLa cells. Silencing any of the subunit c isoforms individually resulted in an ATP synthesis defect, indicating that these isoforms are not functionally redundant. We found that subunit c knockdown impaired the structure and function of the mitochondrial respiratory chain. In particular, P2 silencing caused defective cytochrome oxidase assembly and function. Because the expression of exogenous P1 or P2 was able to rescue the respective silencing phenotypes, but the two isoforms were unable to cross-complement, we hypothesized that their functional specificity resided in their targeting peptides. In fact, the expression of P1 and P2 targeting peptides fused to GFP variants rescued the ATP synthesis and respiratory chain defects in the silenced cells. Our results demonstrate that the subunit c isoforms are nonredundant, because they differ functionally by their targeting peptides, which, in addition to mediating mitochondrial protein import, play a yet undiscovered role in respiratory chain maintenance.  相似文献   

6.
Mitochondrial respiratory chain deficiencies represent one of the major causes of metabolic disorders that are related to genetic defects in mitochondrial or nuclear DNA. The mitochondrial protein synthesis allows the synthesis of the 13 respiratory chain subunits encoded by mtDNA. Altogether, about 100 different proteins are involved in the translation of the 13 proteins encoded by the mitochondrial genome emphasizing the considerable investment required to maintain mitochondrial genetic system. Mitochondrial protein synthesis deficiency can be caused by mutations in any component of the translation apparatus including tRNA, rRNA and proteins. Mutations in mitochondrial rRNA and tRNAs have been first identified in various forms of mitochondrial disorders. Moreover abnormal translation due to mutation in nuclear genes encoding tRNA-modifying enzymes, ribosomal proteins, aminoacyl-tRNA synthetases, elongation and termination factors and translational activators have been successively described. These deficiencies are characterized by a huge clinical and genetic heterogeneity hampering to establish genotype-phenotype correlations and an easy diagnosis. One can hypothesize that a new technique for gene identification, such as exome sequencing will rapidly allow to expand the list of genes involved in abnormal mitochondrial protein synthesis.  相似文献   

7.
Coenzyme Q is a redox-active lipid that functions as an electron carrier in the mitochondrial respiratory chain. Q-biosynthesis in Saccharomyces cerevisiae requires at least nine proteins (Coq1p-Coq9p). The molecular function of Coq8p is still unknown; however, lack of Q and the concomitant accumulation of the intermediate 3-hexaprenyl-4-hydroxybenzoic acid in the absence of Coq8p suggest an essential role in Q-biosynthesis. Localization studies identify Coq8p as a soluble mitochondrial protein, with characteristics of a protein of the matrix or associated with the inner mitochondrial membrane. Coq8p forms homomeric structure(s) as revealed by two-hybrid analysis and tandem affinity purification. Two-dimensional (2D)-Blue Native/sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis suggests that Coq8p - together with Coq2p and Coq10p - is predominantly associated with a complex of about 500 kDa, whereas Coq3p, Coq5p and Coq9p are mainly organized in a 1.3 MDa Q-biosynthesis complex that is not associated with the complex III and IV supracomplexes of the respiratory chain. Loss of Coq8p is accompanied by destabilization of Coq3p, but not of Coq9p from the 1.3 MDa Q-biosynthesis complex. This effect cannot be reversed by Q(6) supplementation. The detection of Coq3p isoforms by 2D-isoelectric focusing is in line with the proposed function of Coq8p as a kinase, with Coq3p as a target.  相似文献   

8.
The channel-forming protein called VDAC forms the major pathway in the mitochondrial outer membrane and controls metabolite flux across that membrane. The different VDAC isoforms of a species may play different roles in the regulation of mitochondrial functions. The mouse has three VDAC isoforms (VDAC1, VDAC2 and VDAC3). These proteins and different versions of VDAC3 were expressed in yeast cells (S. cerevisiae) missing the major yeast VDAC gene and studied using different approaches. When reconstituted into liposomes, each isoform induced a permeability in the liposomes with a similar molecular weight cutoff (between 3,400 and 6,800 daltons based on permeability to polyethylene glycol). In contrast, electrophysiological studies on purified proteins showed very different channel properties. VDAC1 is the prototypic version whose properties are highly conserved among other species. VDAC2 also has normal gating activity but may exist in 2 forms, one with a lower conductance and selectivity. VDAC3 can also form channels in planar phospholipid membranes. It does not insert readily into membranes and generally does not gate well even at high membrane potentials (up to 80 mV). Isolated mitochondria exhibit large differences in their outer membrane permeability to NADH depending on which of the mouse VDAC proteins was expressed. These differences in permeability could not simply be attributed to different amounts of each protein present in the isolated mitochondria. The roles of these different VDAC proteins are discussed. Received: 19 June 1998/Revised: 1 April 1999  相似文献   

9.
10.
11.
12.
OPA1 is a dynamin-related GTPase that controls mitochondrial dynamics, cristae integrity, energetics and mtDNA maintenance. The exceptional complexity of this protein is determined by the presence, in humans, of eight different isoforms that, in turn, are proteolytically cleaved into combinations of membrane-anchored long forms and soluble short forms. Recent advances highlight how each OPA1 isoform is able to fulfill “essential” mitochondrial functions, whereas only some variants carry out “specialized” features. Long forms determine fusion, long or short forms alone build cristae, whereas long and short forms together tune mitochondrial morphology. These findings offer novel challenging therapeutic potential to gene therapy.  相似文献   

13.
Abstract: The 14-3-3 protein family, which is present at particularly high concentrations in mammalian brain, is known to be involved in various cellular functions, including protein kinase C regulation and exocytosis. Despite the fact that most of the 14-3-3 proteins are cytosolic, a small but significant proportion of 14-3-3 in brain is tightly and selectively associated with some membranes. Using a panel of isoform-specific antisera we find that the ε, η, γ, β, and ζ isoforms are all present in purified synaptic membranes but absent from mitochondrial and myelin membranes. In addition, the η, ε, and γ isoforms but not the β and ζ isoforms are associated with isolated synaptic junctions. When different populations of synaptosomes were fractionated by a nonequilibrium Percoll gradient procedure, the ε and γ isoforms were present and the β and ζ isoforms were absent from the membranes of synaptosomes sedimenting in the more dense parts of the gradient. The finding that these proteins are associated with different populations of synaptic membranes suggests that they are selectively expressed in different classes of neurones and raises the possibility that some or all of them may influence neurotransmission by regulating exocytosis and/or phosphorylation.  相似文献   

14.
15.
Thermogenesis is a process of heat production in living organisms. It is rare in plants, but it does occur in some species of angiosperm. The heat is generated via plant mitochondrial respiration. As possible involvement in thermogenesis of mitochondrial factors, alternative oxidases (AOXs) and plant uncoupling mitochondrial proteins (PUMPs) have been well studied. AOXs and PUMPs are ubiquitously present in the inner membrane of plant mitochondria. They serve as two major energy dissipation systems that balance mitochondrial respiration and uncoupled phosphorylation by dissipating the H+ redox energy and proton electrochemical gradient (ΔμH+) as heat, respectively. AOXs and PUMPs exert similar physiological functions during homeothermic heat production in thermogenic plants. AOXs have five isoforms, while PUMPs have six. Both AOXs and PUMPs are encoded by small nuclear multigene families. Multiple isoforms are expressed in different tissues or organs. Extensive studies have been done in the area of thermogenesis in higher plants. In this review, we focus on the involvement and regulation of AOXs and PUMPs in thermogenesis.  相似文献   

16.
Thiol‐disulphide redox regulation has a key role during the biogenesis of mitochondrial intermembrane space (IMS) proteins. Only the Cys‐reduced form of precursor proteins can be imported into mitochondria, which is followed by disulphide bond formation in the mitochondrial IMS. In contrast to the wealth of knowledge on the oxidation process inside mitochondria, little is known about how precursors are maintained in an import‐competent form in the cytosol. Here we provide the first evidence that the cytosolic thioredoxin system is required to maintain the IMS small Tim proteins in reduced forms and facilitate their mitochondrial import during respiratory growth.  相似文献   

17.
18.
Using Saccharomyces cerevisiae mutants depleted of either isoform of VDAC (voltage dependent anion selective channel) we studied the role of the cytosol and mitochondria redox states in regulation of the expression levels of some mitochondrial proteins. The studied proteins are MnSOD and subunits of the protein import machinery of the mitochondrial outer membrane, i.e. Tom70, Tom40 and Tob55 (Sam50). We have shown that both the cytosol and mitochondria redox states depend on the presence of a given VDAC isoform. The cytosol redox state is mediated by VDAC1, although VDAC2 has a quantitative effect, whereas the mitochondria redox state depends on the presence of both VDAC isoforms. Moreover, we have shown that the cytosol redox status but not the mitochondrial one is decisive for the expression levels of the studied mitochondrial proteins. Thus, expression levels of some mitochondrial proteins is influenced by VDAC and this regulatory process at least partially does not require its channel activity as VDAC2 does not form a channel. Thus, VDAC can be regarded as a participant of signaling pathways in S. cerevisiae cells.  相似文献   

19.
Mitochondrial rhodanese: membrane-bound and complexed activity   总被引:3,自引:0,他引:3  
We have proposed that phosphorylated and dephosphorylated forms of the mitochondrial sulfurtransferase, rhodanese, function as converter enzymes that interact with membrane-bound iron-sulfur centers of the electron transport chain to modulate the rate of mitochondrial respiration (Ogata, K., Dai, X., and Volini, M. (1989) J. Biol. Chem. 204, 2718-2725). In the present studies, we have explored some structural aspects of the mitochondrial rhodanese system. By sequential extraction of lysed mitochondria with phosphate buffer and phosphate buffer containing 20 mM cholate, we have shown that 30% of the rhodanese activity of bovine liver is membrane-bound. Resolution of cholate extracts on Sephadex G-100 indicates that part of the bound rhodanese is complexed with other mitochondrial proteins. Tests with the complex show that it forms iron-sulfur centers when incubated with the rhodanese sulfur-donor substrate thiosulfate, iron ions, and a reducing agent. Experiments on the rhodanese activity of rat liver mitochondria give similar results. Taken together, the findings indicate that liver rhodanese is in part bound to the mitochondrial membrane as a component of a multiprotein complex that forms iron-sulfur centers. The findings are consistent with the role we propose for rhodanese in the modulation of mitochondrial respiratory activity.  相似文献   

20.
Legumes carry out special biochemical functions, e.g. the fixation of molecular nitrogen based on a symbiosis with proteobacteria. At the cellular level, this symbiosis has to be implemented into the energy metabolism of the host cell. To provide a basis for future analyses, we have characterized the protein complement of mitochondria of the model legume Medicago truncatula using two-dimensional isoelectric focussing (IEF) and blue-native (BN)-SDS-PAGE. While the IEF reference map resulted mainly in resolution of those proteins associated with the mitochondrial matrix, the BN proteomic map allowed separation of protein subunits from the respiratory chain protein complexes, which are located in the organelle's inner membrane. The M. truncatula mitochondrial BN reference map revealed some striking similarities to the one from Arabidopsis thaliana but at the same time exhibited also some special features: complex II is of increased abundance and additionally represented by a low molecular mass form not reported for Arabidopsis. Furthermore three highly abundant forms of prohibitin complexes are present in the mitochondrial proteome of M. truncatula. Special features with respect to mitochondrial protein complexes might reflect adaptations of legumes to elevated cellular energy requirements enabling them to develop symbiotic interactions with rhizobial bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号