首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Manure slurries (n = 3) prepared from the feces and urine of lactating dairy cattle (1 part urine, 2.2 parts feces, and 6.8 parts distilled water) had an initial pH of 8.6 ± 0.1; dissolved carbonate concentrations of 48 ± 4 mm, and Escherichia coli counts of 5.9 ± 0.7 logs per ml slurry. The pH of untreated slurries declined to pH 7.0 ± 0.1 by the 10th day of incubation, and the E. coli count increased approximately 10-fold (P < 0.05). When slurries were treated with Na2CO3, K2CO3, NaHCO3 or Na2CO3·NaHCO3 (0 to 16 g/kg slurry), the dissolved carbonates increased in a linear fashion, but only Na2CO3 and K2CO3 (8 g/kg or greater) or Na2CO3·NaHCO3 (16 g/kg) ensured an alkaline pH. Even relatively low concentrations of Na2CO3 or K2CO3 (8 or 12 g/kg) caused a decrease in E. coli viability (P < 0.05), and E. coli could not be detected if 16 g/kg was added (day 5 or 10 of incubation). Na2CO3·NaHCO3 also caused a decrease in E. coli viability, (P < 0.05), but some E. coli (approximately 104 cells per g) were detected on day 10 even if the concentration was 16 g/kg. NaHCO3 did not prevent the decrease in pH or cause a decrease in E. coli numbers (P > 0.05). Calculations based on the Henderson-Hasselbalch equation (pH and dissolved carbonates) indicated that little E. coli killing was noted until the dissolved carbonate anion concentrations (CO3 −2) were greater than 1 mm, but bicarbonate anion (HCO3 ) concentrations as high as 180 mm did not affect E. coli viability. These results are consistent with the idea that carbonate anion has antimicrobial properties and can kill E. coli in dairy cattle manure. Received: 20 December 2000 / Accepted: 7 February 2001  相似文献   

2.
The maximum biomass in iron-limited photosynthetic batch cultures of chlorella increased as the logarithm of the iron concentration. The growth yield from iron (Y x/Fe) showed a marked inverse relation to the specific growth rate. The maximum biomass yield, g dry biomass/g iron consumed, was 7.5x103 with specific growth rate 0.108 h-1; the minimum was 0.79×103 with specific growth rate 0.145 h-1. The maximum specific growth rate in the exponential phase of Fe limited cultures varied as the initial Fe concentration. Fe-limited growth made the cells adhere to a glass surface.Abbreviation O.D. optical density  相似文献   

3.
Enzyme production with E. coli ATCC 11105, in a complex medium using phenylacetic acid as inducer is carried out in a stirred-tank reactor of 10 dm3 and an airlift tower-loop reactor of 60 dm3 with outer loop at a temperature of 27 °C. The optimum inducer concentration was 0.8 kg/m3, which was kept constant by fed-batch operation. The optimum of the relative dissolved O2-concentration with regard to saturation is below 10% in a stirred-tank reactor and at 35% in a tower-loop reactor. It was kept constant by parameter-adaptive control of the aeration rate. In a stirred-tank enzyme productivity is slightly higher than in a tower-loop reactor, and much higher than in a bubble column reactor.List of Symbols CPR kg/(m3 h) CO2-production rate - OTR kg/(m3 h) O2-transfer rate - OUR kg/(m3 h) O2-utilization rate - PAA phenylacetic acid (inducer) - RQ = CPR/OUR respiratory quotient - X kg/m3 cell mass concentration - m h–1 maximum specific growth rate  相似文献   

4.
Two strains of Methanosarcina (M. Barkeri strain MS, isolated from sewage sludge, and strain UBS, isolated from lake sediments) were found to have similar cellular properties and to have DNA base compositions of 44 mol percent guanosine plus cytosine. Strain MS was selected for further studies of its one-carbon metabolism. M. barkeri grew autotrophically via H2 oxidation/CO2 reduction. The optimum temperature for growth and methanogenesis was 37°C. H2 oxidation proceeded via an F420-dependent NADP+-linked hydrogenase. A maximum specific activity of hydrogenase in cell-free extracts, using methyl viologen as electron acceptor, was 6.0 mol min · mg protein at 37°C and the optimum pH (9.0). M. barkeri also fermented methanol andmethylamine as sole energy sources for growth. Cell yields during growth on H2/CO2 and on methanol were 6.4 and 7.2 mg cell dry weight per mmol CH4 formed, respectively. During mixotrophic growth on H2/CO2 plus methanol, most methane was derived from methanol rather than from CO2. Similar activities of hydrogenase were observed in cell-free extracts from H2/CO2-grown and methanol-grown cells. Methanol oxidation apparently proceeded via carrierbound intermediates, as no methylotrophy-type of methanol dehydrogenase activity was observed in cell-free extracts. During growth on methanol/CO2, up to 48% of the cell carbon was derived from methanol indicating that equivalent amounts of cell carbon were derived from CO2 and from an organic intermediate more reduced than CO2. Cell-free extracts lacked activity for key cell carbon synthesis enzymes of the Calvin cycle, serine path, or hexulose path.Abbreviations CAPS cycloaminopropane sulfonic acid - CH3-SCoM methyl coenzyme M - DCPIP 2,6-dichlorophenolindophenol - DEAE diethylaminoethyl - dimethyl POPOP 1,4-bis-2-(4-mothyl-5-phenyloxazolyl)-benzene - DNA deoxyribonucleic acid - dpm dismtegrations per min - DTT dithiothreitol - EDTA ethylenediamine tetraacetic acid - F420 factor 420 - G+C guanosine plus cytosine - NAD+ nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - PBBW phosphate buffered basal Weimer - PMS phenazine methosulfate - PPO 2,5-diphenyloxazole - rRNA ribosomal ribonucleic acid - RuBP ribulose-1,5-bisphosphate - Tris tris-hydroxymethyl-aminomethane - max maximum specific growth rate  相似文献   

5.
Summary Under chemolithoautotrophic growth conditions with the organism Alcaligenes eutrophus H16 the exponential growth phase is characterized by two different growth rates, each associated with different specific rates of ammonium consumption. On the basis of the analytical determination of Poly--hydroxybutyric acid (PHB), it can be conclusively shown that PHB is synthesized even during the exponential growth phase at a specific rate proportional to the specific growth rates of total biomass. After complete consumption of ammonium, the increase of biomass is exclusively due to PHB synthesis, whereas protein and rest biomass (cell dry weight minus PHB) remain constant. After an extended period of fermentation, the PHB content reaches a saturation value. The transient phase between the growth and the storage phase is very short in comparison to the duration of the whole fermentation. In the case of Alcaligenes eutrophus, strain H 16, high concentrations of dissolved oxygen strongly influence growth as well as PHB synthesis.Abbrevations cO2,L concentration of oxygen in the liquid phase (dissolved oxygen tension: d.o.t) - cH2,L concentration of hydrogen in the liquid phase - cCO2,L concentration of carbon dioxide in the liquid phase - S limiting substrate, concentration of - X total biomass, concentration of; total cell dry weight - P product; PHB, concentration of - R rest biomass: X-P, concentration of - rX dX/dt growth rate - rP dP/dt rate of PHB synthesis - rR dR/dt rate of rest biomass production - r0 dcO2,L/dt rate of oxygen consumption - X dX/dt·1/X=rX·1/X specific growth rate - P dP/dt·1/P=rP·1/P specific rate of product formation - R dR/dt·1/R=rR·1/R specific rate of rest biomass formation - r0/R specific respiration rate  相似文献   

6.
The response of Eucalyptus grandis seedlings to elevated atmospheric CO2 concentrations was examined by growing seedlings at either 340 or 660 n mol CO2 mol-1 for 6 weeks. Graded increments of phosphorus and nitrogen fertilizers were added to a soil deficient in these nutrients to establish if the growth response to increasing nutrient availability was affected by CO2 concentration. At 660 μmol CO2 mol-1, seedling dry weight was up to five times greater than at 340 μmol CO2 mol-1. The absolute response was largest when both nitrogen and phosphorus availability was high but the relative increase in dry weight was greatest at low phosphorus availability. At 340 μmol CO2 mol-1 and high nitrogen availability, growth was stimulated by addition of phosphorus up to 76 mg kg 1 soil. Further additions of phosphorus had little effect. However, at 660 μmol CO2 mol-1, growth only began to plateau at a phosphorus addition rate of 920mg kg-1 soil. At 340 μmol CO2 mol-1 and high phosphorus availability, increasing nitrogen from 40 to 160mg kg-1 soil had little effect on plant growth. At high CO2, growth reached a maximum at between 80 and 160mg nitrogen kg-1 soil. Total uptake of phosphorus was greater at high CO2 concentration at all fertilizer addition rates, but nitrogen uptake was either lower or unchanged at high CO2 concentration except at the highest nitrogen fertilizer rate. The shoot to root ratio was increased by CO2 enrichment, primarily because the specific leaf weight was greater. The nitrogen and phosphorus concentration in the foliage was lower at elevated CO2 concentration partly because of the higher specific leaf weight. These results indicate that critical foliar concentrations currently used to define nutritional status and fertilizer management may need to be reassessed as the atmospheric CO2 concentration rises.  相似文献   

7.
We studied the responses of an aquatic microcosm in two different eutrophic conditions to elevated atmospheric CO2concentration. We used microcosms, consisting of Escherichia coli(bacteria), Tetrahymena thermophila(protozoa) and Euglena gracilis(algae), in salt solution with 50 and 500 mg l–1of proteose peptone (eutrophic and hypereutrophic conditions, respectively) under ambient and elevated CO2(1550±100 l l–1) conditions. The density of E. gracilisincreased significantly under elevated CO2in both eutrophic and hypereutrophic microcosms. In the eutrophic microcosm, the other elements were not affected by elevated CO2. In the hypereutrophic microcosm, however, the concentrations of ammonium and phosphate decreased significantly under elevated CO2. Furthermore, the density of T. thermophilawas maintained in higher level than that in the microcosm with ambient CO2and the density of E. coliwas decreased by CO2enrichment. Calculating the carbon biomasses of T. thermophilaand E. colifrom their densities, the changes in their biomasses by CO2enrichment were little as compared with large increase of E. graciliscarbon biomass converted from chlorophyll a. From the responses to elevated CO2in the subsystems of the hypereutrophic microcosm consisting of either one or two species, the increase of E. graciliswas a direct effect of elevated CO2, whereas the changes in the density of E. coliand T. thermophilaand the decreases in the concentration of ammonium and phosphate are considered to be indirect effects rather than direct effects of elevated CO2. The indirect effects of elevated CO2were prominent in the hypereutrophic microcosm.  相似文献   

8.
Summary High concentration production of an extracellular enzyme, lipase, was achieved by a fed-batch culture of Pseudomonas fluorescens. During the cultivation, temperature, pH and dissolved oxygen concentration wwre maintained at 23°C, 6.5 and 2–5 ppm, respectively. Olive oil was used as a carbon source for microbial growth. To produce lipase effectively the specific feed rate of olive oil had to be maintained in a range of 0.04–0.06 (g oil) · (g dry cell)-1 · h-1. The CO2 evolution rate was monitored to estimate the requirement of olive oil. The ratio of feed rate of olive oil to the CO2 evolution rate was varied in the range of 20–60 g oil/mol CO2. The higher value of the ratio accelerated microbial growth, but did not favour lipase production. Once the high cell concentration of 60 g/l had been achieved, the ratio was changed from 50 to 30 g oil/mol CO2 to accelerate the lipase production. By this CO2-dependent method a very high activity of lipase, 1980 units/ml, was obtained. Both the productivity and yield of lipase were prominently increased compared with a conventional batch culture.  相似文献   

9.
The gene encoding D-amino acid oxidase (DAAO) from Trigonopsis variabilis CBS 4095 has been cloned and expressed in Escherichia coli BL21 (DE3). Unfortunately, it was observed that the host cell was negatively affected by the expressed DAAO, resulting in a remarkable decrease in cell growth. To overcome this problem, we investigated several factors that affect cell growth rate and DAAO production such as addition time of inducer and dissolved oxygen (DO) concentration. The addition time of lactose, which was used as an inducer, and DO concentration appeared to be critical for the cell growth of E. coli BL21 (DE3)/pET-DAAO. A two-stage DO control strategy was developed, in which the DO concentration was controlled above 50% until specific stage of bacterial growth (OD600 30–40) and then downshifted to 30% by changing the agitation speed and aeration rate, and they remained at these rates until the end of fermentation. With this strategy, the maximum DAAO activity and cell growth reached 18.5 U/mL and OD600 81, respectively. By reproducing these optimized conditions in a 12-m3 fermentor, we were able to produce DAAO at a productivity of 19 U/mL with a cell growth of OD600 80.  相似文献   

10.
The effects of various exogenous nucleic acid compounds on the viability and cell composition of Bdellovibrio bacteriovorus starved in buffer were measured. In decreasing order of effectiveness, these compounds were found to decrease the rate of loss of viability and the loss of cell carbon, cell ribonculeic acid, and cell protein: glutamate > ribonucleoside monophosphates > ribonucleosides > deoxyribonucleoside monophosphates. Similar sparing effects were not observed with nucleic acid bases, deoxyribonucleosides, ribose, ribose-5-phosphate, deoxyribose, and deoxyribose-5-phosphate. Appreciable increases in the respiration rate over the endogenous rate did not occur when cell suspensions were incubated with individual or mixtures of nucleic acid compounds. Formation of 14CO2 by cell suspensions incubated with carbon 14-labeled nucleic acid compounds indicated ribonucleosides and ribonucleoside monophosphates were respired and to a small extent, were incorporated into cell material of non-growing cells. The respired 14CO2 was derived mainly from the ribose portion of these molecules. No respired 14CO2 or incorporated carbon 14 was found with bdellovibrios incubated with other nucleic acid compounds tested, including free ribose. During growth of B. bacteriovorus on Escherichia coli in the presence of exogenous UL-14C-ribonucleoside monophosphates, 10–16% of the radioactivity was in the respired CO2 and of the radioactivity incorporated into the bdellovibrios, only 40 to 50% resided in the cell nucleic acids. However, during growth on 14C-adenine,-uracil, or-thymidine labeled E. coli, only trace amounts of 14CO2 were found and 90% or more of the incorporated radioactivity was in the bdellovibrio nucleic acids. It is concluded that bdellovibrio can use ribonucleoside monophosphates during growth and starvation as biosynthetic precursors for synthesis of both nucleic acids and other cell materials as well as catabolizing the ribose portion for energy purposes.Abbreviations HM buffer 5 mM N-2-hydroxyethyl-piperazine-N-2-ethanesulfonic acid (pH 7.6) containing 0.1 mM CaCl2 and MgCl2 - DNA deoxyribonucleic acid - RNA ribonucleic acid - Ar, Cr, Gr, Ur ribonucleosides of adenine, cytosine, guanine, uracil, respectively - dTr deoxythymidine - AMP, CMP, GMP, UMP ribonucleoside monophosphates of adenine, cytosine, guanine, and uracil, respectively - dTMP deoxythymidine monophosphate - ATP adenosine triphosphate - PFU plaque-forming units  相似文献   

11.
CO2 in large-scale and high-density CHO cell perfusion culture   总被引:2,自引:0,他引:2  
Productivity in a CHO perfusion culture reactor was maximized when pCO2 was maintained in the range of 30–76 mm Hg. Higher levels of pCO2 (> 150 mm Hg) resulted in CHO cell growth inhibition and dramatic reduction in productivity. We measured the oxygen utilization and CO2 production rates for CHO cells in perfusion culture at 5.55×10-17 mol cell-1 sec-1 and 5.36×10-17 mol cell-1 sec-1 respectively. A simple method to directly measure the mass transfer coefficients for oxygen and carbon dioxide was also developed. For a 500 L bioreactor using pure oxygen sparge at 0.002 VVM from a microporous frit sparger, the overall apparent transfer rates (kLa+kAA) for oxygen and carbon dioxide were 0.07264 min-1 and 0.002962 min-1 respectively. Thus, while a very low flow rate of pure oxygen microbubbles would be adequate to meet oxygen supply requirements for up to 2.1×107 cells/mL, the low CO2 removal efficiency would limit culture density to only 2.4×106 cells/mL. An additional model was developed to predict the effect of bubble size on oxygen and CO2 transfer rates. If pure oxygen is used in both the headspace and sparge, then the sparging rate can be minimized by the use of bubbles in the size range of 2–3 mm. For bubbles in this size range, the ratio of oxygen supply to carbon dioxide removal rates is matched to the ratio of metabolic oxygen utilization and carbon dioxide generation rates. Using this strategy in the 500 L reactor, we predict that dissolved oxygen and CO2 levels can be maintained in the range to support maximum productivity (40% DO, 76 mm Hg pCO2) for a culture at 107 cells/mL, and with a minimum sparge rate of 0.006 vessel volumes per minute.A = volumetric agitated gas-liquid interfacial area at the top of the liquid, 1/mB = cell broth bleeding rate from the vessel, L/minCER = carbon dioxide evolution rate in the bioreactor, mol/min[CO2] = dissolved CO2 concentration in liquid, M[CO2]* = CO2 concentration in equilibrium with sparger gas, M[CO2]** = CO2 concentration in equilibrium with headspace gas, MCO2(1) = dissolved carbon dioxide molecule in water[CT] = total carbonic species concentration in bioreactor medium, M[CT]F = total carbonic species concentration in feed medium, MD = bioreactor diameter, mDI = impeller diameter, mDb = the initial delivered bubble diameter, mF = fresh medium feeding rate, L/minHL = liquid height in the vessel, mkA = carbon dioxide transfer coefficient at liquid surface, m/mink infA supO = oxygen transfer coefficient at liquid surface, m/minNomenclature  相似文献   

12.
E. coli ATCC 11105 was cultivated in a 10-1 stirred tank reactor and in a 60-1 tower loop reactor in batch and continuous operation. By on-line measurements of O2 and CO2 concentrations in the outlet gas, pH, temperature, cell mass concentration X as well as dissolved O2 concentration along the tower in the broth, gas holdup, broth recirculation rate through the loop and by offline measurements of substrate concentration DOC and cell mass concentration along the tower, the maximum specific growth rate m , yield coefficients Y X/S. Y X/DOC and were evaluated in stirred tank and tower loop in batch and continuous cultures with and without motionless mixers in the tower and at different broth circulation rates through the loop. To control the accuracy of the measurements the C balance was calculated and 95% of the C content was covered.The biological parameters determined depend on the mode of operation as well as on the reactor used. Furthermore, they depend on the recirculation rate of the broth and built-ins in the tower. The unstructured cell and reactor models are unable to explain these differences. Obviously, structured cell and reactor models are needed. The cell mass concentration can be determined on line by NADH fluorescence in balanced growth, if the model parameters are determined under the same operational conditions in the same reactor.List of Symbols a, b empirical parameters in Eq. (1) - CPR kg/(m3 h) CO2 production rate - C kg/m3 concentration - D l/h dilution rate - DOC kg/m3 dissolved organic carbon - I net. fluorescence intensity - K S kg/m3 Monod constant - k L a l/h volumetric mass transfer coefficient - OTR kg/(m3 h) oxygen transfer rate - OUR kg/(m3 h) oxygen utilization rate - RQ = CPR/OUR respiratory quotient - S kg/m3 substrate concentration - t h,min, s time - t u min recirculation time - t M min mixing time - v m3/h volumetric flow rate through the loop - X kg/m3 (dry) cell mass concentration - Y X/S yield coefficient of cell mass with regard to the consumed substrate - Y X/DOC yield coefficient of the cell mass with regard to the consumed DOC - Y X/O yield coefficient of the cell mass with regard to the consumed oxygen - Z relative distance in the tower from the aerator with regard to the height of the aerated broth - l/h specific growth rate - m l/h maximum specific growth rate Indices f feed - e outlet  相似文献   

13.
The role of carbon dioxide in glucose metabolism of Bacteroides fragilis   总被引:2,自引:0,他引:2  
The effect of CO2 concentration on growth and glucose fermentation of Bacteroides fragilis was studied in a defined mineral medium. Batch culture experiments were done in closed tubes containing CO2 concentrations ranging from 10% to 100% (with appropriate amounts of bicarbonate added to maintain the pH at 6.7). These experiments revealed that CO2 had no influence on growth rate or cell yield when the CO2 concentration was above 30% CO2 (minimum available CO2–HCO 3 - , 25.5 mM), whereas a slight decrease in these parameters was observed at 20% and 10% CO2 (available CO2–HCO 3 - , 17 and 8.5 mM, respectively). If CO2–HCO 3 - concentrations were below 10 mM, the lag phase lengthened and a decrease in maximal growth rate and cell yield were observed. The amount of acetate made decreased, while d-lactate concentration increased. A net production of CO2 allowed growth under conditions of extremely low concentrations of added CO2.When B. fragilis was grown in continuous culture with 100% CO2 or 100% N2, the dilution rate influenced the concentrations of acetate, succinate, propionate, d-lactate, l-malate and formate formed. Decreasing the dilution rate favored propionate and acetate production under both conditions. When the organism was grown with 100% N2, the amount of propionate formed was greater than the amount of succinate formed at all dilution rates. Except at slow dilution rates the reverse was true when 100% CO2 was used. B. fragilis was unable to grow at dilution rates faster than 0.154 h-1 when grown with 100% N2; the Y glc max was 67.9 g DW cells/mol glucose and m s was 0.064 mmol glucose/g DW·h. If the gas atmosphere was 100% CO2 the organism was washed out of the culture when the dilution rate exceeded 0.38 h-1; the Y glc max was 59.4 g DW cells/mol glucose and m s was 0.094 mmol glucose/g DW·h.Measurement of the phosphoenolpyruvate (PEP) carboxykinase (E.C. 4.1.1.49) with whole, permeabilized cells of B. fragilis showed an increase of specific enzyme activity with decreasing CO2 concentrations. The mechanisms used by B. fragilis to adjust to low levels of CO2 are discussed.  相似文献   

14.
Light-dependent hydrogen evolution by Scenedesmus   总被引:1,自引:1,他引:0  
Summary The effect of glucose and the uncoupler Cl-CCP upon hydrogen production was studied in adapted cells of Scenedesmus obliquus D3. Cl-CCP at 10-5M concentration completely inhibited the evolution of H2 in the dark and increased the apparent rate of H2 evolution in the light. At 10-5M Cl-CCP, photosynthesis and photoreduction by anaerobically adapted algae were only temporarily inhibited; O2 evolution reappeared after approximately 1 hr of illumination if CO2 was present. Increasing the Cl-CCP concentration to 5 x 10-5M led to a maximum rate of photohydrogen production and fully inhibited H2 evolution, photoreduction and dark H2 evolution. H2 evolution was accompanied by a release of varying amounts of CO2 in the light, as well as in the dark. Dark CO2 production was stimulated by Cl-CCP. H2 evolution in the light was stimulated by adding glucose to autotrophically grown cells or by growing the cells heterotrophically with glucose; starvation had an opposite effect. Adapted cells released 14CO2 from the 3 and/or 4 position of specifically labeled glucose, indicating that degradation occurred via the Embden-Meyerhof pathway. The amount of H2 released by autotrophically grown cells was the same either with continuous illumination or with short periods of light, followed by darkness. Scenedesmus mutant No. 11, which is unable to evolve O2 was not inhibited in its capacity to evolve H2 in the light. These data indicate that the evolution of H2 in the light by adapted Scenedesmus depends upon the degradation of organic material and does not require the production of free O2 by photosystem II.The following abbreviations are used: Cl-CCP = carbonyl cyanide m-chlorophenylhydrazone; DCMU = 3-(3,4-dichlorophenyl)-1,1-dimethylurea, DNP = 2,4-dinitrophenol.This work was supported by contract AT-(40-1)-2687 from the U.S. Atomic Energy Commission.  相似文献   

15.
Fermentation kinetics for the growth and conversion of H2 and CO2 to CH4 byM. formicicum were modeled by using Monod equations. The maximum specific growth rate and H2 uptake rate max and qmax, were found to be 0.053 h–1 and 0.13 mol/hg cell, respectively. The partial pressure of H2 was found not to have a significant effect on either growth or H2 utilization. The yield of CH4 from H2 was calculated as 0.27 mol/mol, which is within 7% of the theoretical value of 0.25.  相似文献   

16.
Ethanol was produced with Zymomonas mobilis Z6 (ATCC 29191), in batch culture with synthetic medium on glucose as substrate and in the presence of aspartate. The concentrations of glucose, phosphate, ammonium, ethanol and dissolved O2 and CO2 in the medium and O2 and CO2 in the outlet gas as well as the cell mass by culture fluorescence were measured on-line. Cell mass, glucose and aspartate concentrations were measured off-line. In the presence of a sufficient amount of aspartate, the ethanol inhibition effect can be reduced considerably. However, the improvement with yeast extract is more incisive. The relationship between the intensity of culture fluorescence and cell mass concentration is linear, if sufficient aspartate is present.List of Symbols ASP kg/m3 aspartate concentration - CTR kg/(m3 · h) CO2 transfer rate - N, NH4 kg/m3 nitrogen concentration from NH 4 + - P kg/m3 product (ethanol) concentration - p% product (ethanol) yield - PO4 kg/m3 phosphate concentration - Q E kg/(kg · h) specific ethanol production rate - kg/(kg · h) specific nitrogen uptake rate from NH 4 + - Q P kg/(kg · h) specific phosphate uptake rate - Q s kg/(kg · h) specific substrate (glucose) uptake rate - S kg/m3 glucose concentration - S O kg/m3 initial glucose concentration - Y x/s kg/kg yield coefficient - h–1 specific growth rate  相似文献   

17.
    
The production of endo--1,4-glucanase by a Bacillus strain isolated from a hot spring in Zimbabwe was studied in batch culture, chemostat culture, and carbon dioxide-regulated auxostat (CO2-auxostat). The bacteria produced the enzyme in the presence of excess glucose or sucroso, but not under carbon-limited conditions in a chemostat using mineral medium. There was a specific growth rate dependent linear increase in enzyme production in glucose excess, nitrogen-limited chemostat cultures. A high specific growth rate of 2.2 h-1 and a high rate of enzyme production of 362 nkat (mg dry mass h)-1 were attained under nutrient rich conditions in the CO2-auxostat. The bacteria had the highest specific growth rate and endo--1,4-glucanase enzyme production at 50° C. The maximum specific growth rate and the rate of enzyme production increased when yeast extract and tryptone were added in increasing amounts to the mineral medium used for cultivation in separate experiments. Increasing the glucose concentration in the CO2-auxostat cultures increased the rate of enzyme production but did not affect the specific growth rate.  相似文献   

18.
Two species of eucalypt (Eucalyptus macrorhyncha and E. rossii) were grown under conditions of high temperatures (45 °C, maximum) and high light (1500 μmol m?2 s?1, maximum) at either ambient (350 μL L?1) or elevated (700 μL L?1) CO2 concentrations for 8 weeks. The growth enhancement, in terms of total dry weight, was 41% and 103% for E. macrorhyncha and E. rossii, respectively, when grown in elevated [CO2]. A reduction in specific leaf area and increased concentrations of non-structural carbohydrates were observed for leaves grown in elevated [CO2]. Plants grown in elevated [CO2] had an overall increase in photosynthetic CO2 assimilation rate of 27%; however, when measured at the same CO2 concentration a down-regulation of photosynthesis was evident especially for E. macrorhyncha. During the midday period when temperatures and irradiances were maximal, photosynthetic efficiency as measured by chlorophyll fluorescence (Fv/Fm) was lower in E. macrorhyncha than in E. rossii. Furthermore, Fv/Fm was lower in leaves of E. macrorhyncha grown under elevated than under ambient [CO2]. These reductions in Fv/Fm were accompanied by increases in both photochemical (qP) and nonphotochemical quenching (qN and NPQ), and by increases in the concentrations of xanthophyll cycle pigments with an increased proportion of the total xanthophyll cycle pool comprising of antheraxanthin and zeaxanthin. Thus, increased atmospheric [CO2] may enhance photoinhibition when environmental stresses such as high temperatures limit the capacity of a plant to respond with growth to elevated [CO2].  相似文献   

19.
Summary The use of mixed cultures in the food industry is hindered by the lack of rapid and specific measurement techniques. The coculture of Streptococcus thermophilus and Lactobacillus bulgaricus, used for producing starters for yoghurt production, is a simple model of a mixed culture.After verifying that Streptococcus thermophilus specifically degraded urea, we attempted to correlate the cell concentration of the species first with urease activity and then with the rate of CO2 production from urea in the medium. The measurement was performed in real time with a specific electrode for dissolved CO2. The results obtained with the method have the same uncertainy as those obtained by cell counts. The estimation is valid between 107 and 109 cells/ml.  相似文献   

20.
The metabolic fate of photosynthetically-fixed CO2 was determined by labeling samples of Merismopedia tenuissima Lemmerman for 30 min with NaH14CO3 and analyzing its incorporation into low molecular weight compounds, polysaccharide and protein. In N- and P-sufficient cultures, relative incorporation into protein increased as the irradiance used during the labeling period was decreased to 20 μE · m-2 s-1. This pattern was found for cells grown at irradiances of either 20 or 180 μE · m-2· s-1, although incorporation into protein was greater in cultures grown at the higher irradiance. In N-limited continuous cultures, relative incorporation into protein was low, independent of growth rate, and the same for samples tested at 20 or 180 μE · m-2· s-1 irradiance. In contrast, 14C incorporation into protein by P-limited cultures increased as growth rate increased, and at relative growth rates greater than 0.25, the incorporation was greater at 20 than at 180 μE · m-2· s-1. However, the total RNA content and maximum photosynthetic rate of the cultures was the same at all growth rates tested. The interaction between nutrient concentration and light intensity was studied by growing-limited continuous cultures at the same dilution rate, but different irradiances. Relative incorporation into protein was highest in cultures grown at 20 μE · m-2· s-1, in which the relative growth rate was 0.4. These results suggest that photosynthetic carbon metabolism may respond to relative growth rate μ/μmax rather than to growth rate directly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号