首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the light, transfer of lettuce seedlings precultured on liquid medium at pH 6.0 to fresh medium at pH 4.0 induces root hair formation. However, no root hairs form in the dark. Here, we investigated how light induces root hair formation. Randomization of the transverse cortical microtubule (CMT) arrays which occurs in root epidermal cells in the light prior to root hair initiation was not observed in the dark. However, addition of indole-3-acetic acid (IAA) or 1-aminocyclopropane-1-carboxylic acid (ACC) induced CMT randomization and root hair formation. In these cases, CMT randomization occurred in almost the same time-dependent manner as under light. However, root hair initiation was delayed for several hours in the dark. These results suggest that light promotes CMT randomization and root hair initiation via auxin and ethylene signaling but light additionally influences root hair initiation independently of these signaling mechanisms. Furthermore, addition of a microtubule-depolymerizing drug in the dark disrupted the transverse CMT arrays and initiated root hair formation; however, root hair elongation was still suppressed. Root hairs elongated when IAA or ACC was applied with the drug. These results suggest that light also promotes root hair elongation via auxin and ethylene signaling.  相似文献   

2.
The dual effects of auxin and ethylene on rice seminal root growth were investigated in this study. Low concentrations of exogenous indole-3-acetic acid (IAA) had no effect on rice seminal root growth, whereas higher concentrations (≥0.003 μM) were inhibitory. In contrast, low concentrations of the auxin action inhibitor p-chlorophenoxyisobutyric acid (PCIB), ranging from 0.5 to 50 μM, promoted rice seminal root growth, whereas high concentrations of PCIB (≥500 μM) and the polar auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) inhibited rice seminal root growth. These results suggest that endogenous auxin is required but supraoptimal for rapid growth of rice seminal roots. In addition, although rice seminal root growth was inhibited by the exogenous ethylene-releasing compound ethephon or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) as well as exogenous IAA, the 50% inhibition of growth (I50) caused by ethephon or ACC was weakened by certain concentrations of the ethylene action inhibitor Ag+ (0.016-0.4 μM). However, the I50 caused by exogenous IAA was strengthened by Ag+ or the ethylene biosynthetic inhibitor aminoethoxyvinylglycine (AVG) and weakened by certain concentrations of PCIB (0.5-50 μM). Together, the inhibitory mechanisms of auxin and ethylene on rice seminal root growth should be different, and auxin inhibition of rice seminal root growth should not be caused by ethylene. Furthermore, our results indicated that a certain threshold level of ethylene was required to maintain rice seminal root growth, and that ethylene within the threshold may antagonize auxin inhibition of rice seminal root growth.  相似文献   

3.
4.
5.
Root hair formation occurs in lettuce seedlings after transfer to an acidic medium (pH 4.0). This process requires cortical microtubule (CMT) randomization in root epidermal cells and the plant hormone ethylene. We investigated the interaction between ethylene and glucose, a new signaling molecule in plants, in lettuce root development, with an emphasis on root hair formation. Dark-grown seedlings were used to exclude the effect of photosynthetically produced glucose. In the dark, neither root hair formation nor the CMT randomization preceding it occurred, even after transfer to the acidic medium (pH 4.0). Adding 1-aminocyclopropane-1-carboxylic-acid (ACC) to the medium rescued the induction, while adding glucose did not. Although CMT randomization occurred when glucose was applied together with ACC, it was somewhat suppressed compared to that in ACC-treated seedlings. This was not due to a decrease in the speed of randomization, but due to lowering of the maximum degree of randomization. Despite the negative effect of glucose on ACC-induced CMT randomization, the density and length of ACC-induced root hairs increased when glucose was also added. The hair-cell length of the ACC-treated seedlings was comparable to that in the combined-treatment seedlings, indicating that the increase in hair density caused by glucose results from an increase in the root hair number. Furthermore, quantitative RT-PCR revealed that glucose suppressed ethylene signaling. These results suggest that glucose has a negative and positive effect on the earlier and later stages of root hair formation, respectively, and that the promotion of the initiation and elongation of root hairs by glucose may be mediated in an ethylene-independent manner.  相似文献   

6.
7.
Hypocotyl explants of Mesembryanthemum crystallinum regenerated roots when cultured vertically with either the apical end (AE) or basal end (BE) in media containing indole-3-acetic acid (IAA). IAA alone induced roots regularly from the basal end of the explants, either from the cut surface immersed in the medium or from the opposite side. The inhibitors of auxin efflux carriers, α-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA), inhibited rhizogenesis only from AE-cultured explants, indicating the role of polar auxin transport in root regeneration in this system. Cytokinin (zeatin, kinetin, BAP) added to auxin-containing medium reduced rhizogenesis from the explants maintained with BE and AE and additionally changed the IAA-induced pattern of rooting in AE-cultured explants by favoring rooting from the apical end and middle part of the hypocotyl with its concomitant reduction from the basal end. The addition of kinetin did not influence the content of IAA in the explants maintained with AE, suggesting that the cytokinin effect on root patterning was not dependent on auxin biosynthesis. Kinetin, however, strongly enhanced ethylene production. The importance of ethylene in regulating PAT-dependent rhizogenesis was tested by using an ethylene antagonist AgNO3, an inhibitor of ethylene synthesis aminoethoxyvinylglycine (AVG), and a precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC). AgNO3 applied together with IAA or with IAA and kinetin strongly reduced the production of ethylene, inhibited rhizogenesis, and induced nonregenerative callus from BE, suggesting the need for ethylene signaling to elicit the rhizogenic action of auxin. A reduction of rhizogenesis and decrease of ethylene biosynthesis was also caused by AVG. In addition, AVG at 10 μM reversed the effect of cytokinin on root patterning, resulting in roots emerging only from BE on the medium with IAA and kinetin. Conversely, ACC at 200 μM markedly enhanced the production of ethylene and partly mimicked the effect of cytokinin when applied with IAA alone, thus confirming that in cultured hypocotyls of ice plant, cytokinin affects IAA-induced rhizogenesis through an ethylene-dependent pathway.  相似文献   

8.
Root hair formation is an important model with which to study cell patterning and differentiation in higher plants. Ethylene and auxin are critical regulators of root hair development. The role of jasmonates (JAs) was examined in Arabidopsis root hair development as well as their interactions with ethylene in this process. The results have shown that both methyl jasmonate (MeJA) and jasmonic acid (JA) have a pronounced effect on promoting root hair formation. However, the effect of MeJA and JA on root hair formation was blocked by ethylene inhibitors Ag+ or aminoethoxyvinylglycine (AVG). The stimulatory effects of MeJA and JA were also diminished in ethylene-insensitive mutants etr1-1 and etr1-3. Furthermore, the JA biosynthesis inhibitors ibuprofen and salicylhydroxamic acid (SHAM) suppressed 1-aminocyclopropane-1-carboxylic acid (ACC)-induced root hair formation, and decreased the root hairs in seedlings of the ethylene over-producing mutant eto1-1. These results suggested that JAs promote root hair formation, through an interaction with ethylene.  相似文献   

9.
In this study we investigated the role of ethylene in the formation of lateral and adventitious roots in tomato ( Solanum lycopersicum ) using mutants isolated for altered ethylene signaling and fruit ripening. Mutations that block ethylene responses and delay ripening – Nr ( Never ripe ), gr ( green ripe ), nor ( non ripening ), and rin ( ripening inhibitor ) – have enhanced lateral root formation. In contrast, the epi ( epinastic ) mutant, which has elevated ethylene and constitutive ethylene signaling in some tissues, or treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC), reduces lateral root formation. Treatment with ACC inhibits the initiation and elongation of lateral roots, except in the Nr genotype. Root basipetal and acropetal indole-3-acetic acid (IAA) transport increase with ACC treatments or in the epi mutant, while in the Nr mutant there is less auxin transport than in the wild type and transport is insensitive to ACC. In contrast, the process of adventitious root formation shows the opposite response to ethylene, with ACC treatment and the epi mutation increasing adventitious root formation and the Nr mutation reducing the number of adventitious roots. In hypocotyls, ACC treatment negatively regulated IAA transport while the Nr mutant showed increased IAA transport in hypocotyls. Ethylene significantly reduces free IAA content in roots, but only subtly changes free IAA content in tomato hypocotyls. These results indicate a negative role for ethylene in lateral root formation and a positive role in adventitious root formation with modulation of auxin transport as a central point of ethylene–auxin crosstalk.  相似文献   

10.
We tested that the hypothesis that root elongation might be controlled by altering the level of ethylene in intact primary roots of maize(Zea mays L.). We measured root elongation in a short period using a computerized root auxanometer. Compounds which regulate ethylene production were applied to intact primary roots in different time periods. Root elongation was stimulated by the treatment with ethylene antagonists such as Co2+, aminoethoxyvinylglycine (AVG) and L-canaline. This result suggested that root elongation was closely related to ethylene level of intact primary roots. Furthermore, IAA- and 1-aminocyclopropane-1-carboxylic acid (ACC)-induced inhibition of root elongation was reversed by treatment with Co2+. The application of ACC to roots which have been exposed to IAA and Co2+ have no significant effect on root elongation. However, the inhibition of root elongation by ACC in roots previously treated with IAA and AVG became manifest when the applied IAA concentrations were lower. These results were consistent with the hypothesis that the level of ethylene in intact roots functions to moderate root elongation, and suggested that auxin-induced inhibition of root elongation results from auxin induced promotion of ethylene production.  相似文献   

11.
We tested that the hypothesis that root elongation might be controlled by altering the level of ethylene in intact primary roots of maize(Zea mays L.). We measured root elongation in a short period using a computerized root auxanometer. Compounds which regulate ethylene production were applied to intact primary roots in different time periods. Root elongation was stimulated by the treatment with ethylene antagonists such as Co2+, aminoethoxyvinylglycine (AVG) and L-canaline. This result suggested that root elongation was closely related to ethylene level of intact primary roots. Furthermore, IAA- and 1-aminocyclopropane-1-carboxylic acid (ACC)-induced inhibition of root elongation was reversed by treatment with Co2+. The application of ACC to roots which have been exposed to IAA and Co2+ have no significant effect on root elongation. However, the inhibition of root elongation by ACC in roots previously treated with IAA and AVG became manifest when the applied IAA concentrations were lower. These results were consistent with the hypothesis that the level of ethylene in intact roots functions to moderate root elongation, and suggested that auxin-induced inhibition of root elongation results from auxin induced promotion of ethylene production.  相似文献   

12.
Root hair formation is induced when lettuce seedlings are transferred from liquid medium at pH 6.0 to fresh medium at pH 4.0. If seedlings are transferred to pH 6.0, no root hairs are formed. We investigated the role of microtubules in this low pH-induced root hair initiation in lettuce. At the hair-forming zone in root epidermal cells, microtubules were perpendicular to the longitudinal axis of the cell just after pre-culture. This arrangement became disordered as early as 5 min after transfer to pH 4.0, and became random by 30 min later. At pH 4.0, the randomization extended to the entire hair-forming zone of seedlings; at pH 6.0, however, randomization did not occur and transverse microtubules were maintained. When seedlings at pH 6.0 were treated with microtubule-depolymerizing drugs, root hairs were formed. In contrast, when a microtubule-stabilizing drug, taxol, was added to the medium, no root hairs formed, even at pH 4.0. These results suggest that the transverse cortical microtubules inhibit root hair formation, and that their destruction is necessary for initiation. Furthermore, the microfilament-disrupting drugs cytochalasin B and latrunculin B inhibited root hair initiation, suggesting that actin filaments are necessary for root hair initiation.  相似文献   

13.
Auxin and ethylene promote root hair elongation in Arabidopsis   总被引:9,自引:0,他引:9  
Genetic and physiological studies implicate the phytohormones auxin and ethylene in root hair development. To learn more about the role of these compounds, we have examined the root hair phenotype of a number of auxin- and ethylene-related mutants. In a previous study, Masucci and Schiefelbein (1996) showed that neither the auxin response mutations aux1 and axr1 nor the ethylene response mutations etr1 and ein2 have a significant effect on root hair initiation. In this study, we found that mutants deficient in either auxin or ethylene response have a pronounced effect on root hair length. Treatment of wild-type, axr1 and etr1 seedlings with the synthetic auxin, 2,4-D, or the ethylene precursor ACC, led to the development of longer root hairs than untreated seedlings. Furthermore, axr1 seedlings grown in the presence of ACC produce ectopic root hairs and an unusual pattern of long root hairs followed by regions that completely lack root hairs. These studies indicate that both auxin and ethylene are required for normal root hair elongation.  相似文献   

14.
Takahashi H  Jaffe MJ 《Phyton》1984,44(1):81-86
The present study was designed to establish the role of an essential hormone controlling sex expression in cucumber. A potent anti-ethylene agent, AgNO3, completely inhibited pistillate flower formation caused by IAA, ACC or ethephon. Inhibitors of ethylene biosynthesis, AVG and CoCl2 also suppressed feminization due to exogenous IAA or ACC. Though AVG also suppressed ethephon-induced feminization, this may be due to the second effect of AVG rather than the effect on ACC biosynthesis. These results confirm that ethylene is a major factor regulating feminization and that exogenous auxin induces pistillate flower formation through its stimulation of ethylene production, rather than ACC production.  相似文献   

15.
Using leaf epidermis from Vicia faba, we tested whether auxin-induced stomatal opening was initiated by auxin-induced ethylene synthesis. Epidermis was dark-incubated in buffered KNO3 containing 0.1 mM alpha-napthalene acetic acid or 1 mM indole-3-acetic acid. Maximum net opening was ca. 4 micron after 6 h. Opening was reversed by 20 microM ABA, 0.1 mM CaCl2. 1-Aminocyclopropane carboxylic acid (ACC) synthase catalyzes synthesis of ACC, the immediate precursor to ethylene. Auxin-induced stomatal opening was fully inhibited by 10 microM 1-aminoethoxyvinylglycine (AVG), an ACC synthase inhibitor. In solutions containing AVG, auxin-induced opening was restored in a concentration-dependent manner by exogenous ACC, but not in control solutions lacking an auxin. ACC-mediated reversal of AVG-inhibition of stomatal opening was inhibited by alpha-aminoisobutyric acid (AIB), an inhibitor of ACC oxidase, the last enzyme in the ethylene biosynthetic pathway, by 10 microM silver thiosulfate (STS), an inhibitor of ethylene action, and by 20 microM ABA, 0.1 mM CaCl2. CoCl2, an inhibitor of ethylene synthesis, also inhibited auxin-induced opening. Both STS and CoCl2 inhibited opening induced by light or by fusicoccin, but neither light- nor fusicoccin-induced opening was inhibited by AVG. These results support the hypothesis that auxin-induced stomatal opening is mediated through auxin-induced ethylene production by guard cells.  相似文献   

16.
(p-Chlorophenoxy)isobutyric acid (PCIB) inhibited indole-3-acetic acid (IAA)-induced ethylene production in etiolated mung bean hypocotyl sections. The endogenous level of 1-aminocyclopropane-1-carboxylic acid (ACC) was not significantly affected by PCIB, indicating that PCIB exerted its effect primarily by inhibiting the activity of the ethylene-forming enzyme (EFE). This conclusion was supported by the observations that PCIB inhibited the conversion of exogenously applied ACC to ethylene. The inhibitory effect of PCIB was already evident with 0.05 mM PCIB, and it increased with time after application of the inhibitor. PCIB also significantly inhibited ethylene production in apple fruit tissues, but it only slightly reduced the level of endogenous ACC. Similar to mung bean, EFE activity in apple tissue was significantly inhibited by PCIB. The possibility that PCIB also inhibits auxin-induced ACC synthase activity is discussed.  相似文献   

17.
Previous research shows that gravity-sensing in flax (Linum usitatissimum) root is initiated during seed imbibition and precedes root emergence. In this study we investigated the developmental attenuation of flax root gravitropism post-germination and the involvement of ethylene. Gravity response deteriorated significantly from 3 to 11?h after root emergence, which occurred at around 19?h after imbibition (that is, from “age” 22 to 30?h). Although the root elongation rate increased from 22 to 30?h, the gravitropic curving rate declined steadily. Older roots were able to tolerate higher levels of exogenous IAA before inhibition of elongation and gravitropism occurred. The age-dependent effect of IAA on root growth and gravitropism suggests that young roots are more sensitive to auxin and respond to a smaller vertical auxin gradient than older roots upon horizontal gravistimulation. The ethylene synthesis inhibitor AVG (2-aminoethoxyvinyl glycine, 10?μM) or ethylene action inhibitor Ag+ (10?μM) stimulated gravitropic curvature of 30?h roots by 24 and 32%, respectively, but had no effect on 22?h roots, suggesting that as roots age, ethylene begins to play a role in root gravitropism. The auxin transport inhibitor NPA (N-naphthylphthalamic acid, 50?μM) reduced gravitropic curvature of 30?h roots by 24% but had no effect on 22?h roots. On the other hand, treating roots simultaneously with the auxin transport inhibitor and ethylene synthesis or action inhibitor stimulated gravitropic curvature of 30?h roots but not 22?h roots. Taken together, these data indicate that as roots develop, their weakened gravity response is due to decreased auxin sensitivity and possibly auxin transport regulated by ethylene.  相似文献   

18.
Root hair formation is induced in lettuce seedlings when the seedlings are transferred from a liquid medium at pH 6.0 to one at pH 4.0. Auxin, ethylene, and light are also required for the induction of root hair formation. To investigate the mechanism by which ethylene production is regulated during root hair formation, we isolated three 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase genes (Ls-ACO1, 2, and 3) from lettuce, each of which exists as a single copy in the genome. Analysis of the deduced amino acid sequences of the three ACO proteins as well as a phylogenetic analysis revealed that Ls-ACO3 was the most divergent among the ACO family. Northern hybridization analyses revealed that the mRNA levels of Ls-ACO2, but not Ls-ACO1 and Ls-ACO3, increased in the primary root after the transfer to a pH 4.0 medium. Addition of ACC or indole-3-acetic acid (IAA) to the pH 6.0 medium induced root hair formation, and a concomitant accumulation of Ls-ACO2 mRNA was observed. In contrast, the mRNA levels of Ls-ACO1 and Ls-ACO3 were unaffected by either ACC or IAA treatment. Furthermore, white light irradiation of dark-grown seedlings following the transfer to pH 4.0 medium induced the accumulation of all three ACO mRNAs. However, accumulation of Ls-ACO2 mRNA was also observed in non-irradiated seedlings, suggesting that the expression of Ls-ACO2 was induced not by light but by low pH. These results suggest that among the differentially regulated ACO genes, Ls-ACO2 plays a key role in ethylene production during low-pH-induced root hair formation in lettuce.  相似文献   

19.
This study identified the role of CO in regulating the tomato root hair development. Exogenous CO promoted the root hair density and elongation in a concentration-dependent manner. Analysis of cross sections of primary roots also indicated that CO induced the formation of root hairs. Genetic analysis reveals that tomato mutant yg-2 (defective in haem oxygenase-1 activity and intracellular CO generation) displayed a phenotype of delayed root hair development, which however could be reversed by exogenous CO. Further, we analysed LeExt1 :: β -glucuronidase reporter gene for root hair formation and found increasing expression of LeExt1 in the CO-exposed root hairs. Finally, CO was able to act synergistically with auxin, ethylene and NO. It is shown that the effect of CO could be blocked by NPA (auxin transport inhibitor), AVG (ethylene biosynthesis inhibitor), Ag+ (ethylene action inhibitor) or cPTIO (NO scavenger). Exposure of tomato roots to CO also enhanced intracellular NO and reactive oxygen species generation in root hairs. Our results suggest that CO would be required for root hair development and may play a critical role in controlling architectural development of plant roots by a putative mechanism of cross-talk with auxin, ethylene and nitric oxide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号