共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism》1979,572(1):77-82
- 1.1. NADPH-cytochrome P-450 reductase-catalyzed peroxidation of methyl linolenate is inhibited by superoxide dismutase, catalase, ethanol and mannitol and is potentiated by H2O2.
- 2.2. H2O2 is shown to be generated in the incubation mixture in the presence of NADPH and NADPH-cytochrome P-450 reductase. If the system contains Fe-EDTA complex, H2O2 is not formed. In the presence of the enzyme and Fe-EDTA complex, added H2O2 is consumed.
- 3.3. In the presence of Fe-EDTA complex, NADPH-cytochrome P-450 reductase is shown to generate O2− at a slow rate.These results suggest that H2O2 produced from O2− is decomposed to form OH· by the action of Fe-EDTA complex in the lipid peroxidation system and that OH· is a trigger of lipid peroxidation.
2.
Electron spin resonance (ESR) studies on spin trapping of superoxide and hydroxyl radicals by 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) were performed in NADPH-cytochrome P-450 reductase-paraquat systems at pH 7.4. Spin adduct concentrations were determined by comparing ESR spectra of the adducts with the ESR spectrum of a stable radical solution. Kinetic analysis in the presence of 100 microM desferrioxamine B (deferoxamine) showed that: 1) the oxidation of 1 mol of NADPH produces 2 mol of superoxide ions, all of which can be trapped by DMPO when extrapolated to infinite concentration; 2) the rate constant for the reaction of superoxide with DMPO was 1.2 M-1 s-1; 3) the superoxide spin adduct of DMPO (DMPO-OOH) decays with a half-life of 66 s and the maximum level of DMPO-OOH formed can be calculated by a simple steady state equation; and 4) 2.8% or less of the DMPO-OOH decay occurs through a reaction producing hydroxyl radicals. In the presence of 100 microM EDTA, 5 microM Fe(III) ions nearly completely inhibited the formation of the hydroxyl radical adduct of DMPO (DMPO-OH) as well as the formation of DMPO-OOH and, when 100 microM hydrogen peroxide was present, produced DMPO-OH exclusively. Fe(III)-EDTA is reduced by superoxide and the competition of superoxide and hydrogen peroxide in the reaction with Fe(II)-EDTA seems to be reflected in the amounts of DMPO-OOH and DMPO-OH detected. These effects of EDTA can be explained from known kinetic data including a rate constant of 6 x 10(4) M-1 s-1 for reduction of DMPO-OOH by Fe(II)-EDTA. The effect of diethylenetriamine pentaacetic acid (DETAPAC) on the formation of DMPO-OOH and DMPO-OH was between deferoxamine and EDTA, and about the same as that of endogenous chelator (phosphate). 相似文献
3.
Lipid peroxidation initiated by superoxide-dependent hydroxyl radicals using complexed iron and hydrogen peroxide 总被引:3,自引:0,他引:3
J M Gutteridge 《FEBS letters》1984,172(2):245-249
Iron salts stimulate lipid peroxidation by decomposing lipid peroxides to produce alkoxyl and peroxyl radicals which initiate further oxidation. In aqueous solution ferrous salts produce OH. radicals, a reactive species able to abstract hydrogen atoms from unsaturated fatty acids, and so can initiate lipid peroxidation. When iron salts are added to lipids, containing variable amounts of lipid peroxide, the former reaction is favoured and OH. radicals contribute little to the observed rate of peroxidation. When iron is complexed with EDTA, however, lipid peroxide decomposition is prevented, but the complex reacts with hydrogen peroxide to form OH. radicals which are seen to initiate lipid peroxidation. Superoxide radicals appear to play an important part in reducing the iron complex. 相似文献
4.
Generation of hydrogen peroxide, superoxide and hydroxyl radicals during the oxidation of dihydroxyfumaric acid by peroxidase. 下载免费PDF全文
B Halliwell 《The Biochemical journal》1977,163(3):441-448
1. Dihydroxyfumarate slowly autoxidizes at pH6. This reaction is inhibited by superoxide dismutase but not by EDTA. Mn2+ catalyses dihydroxyfumarate oxidation by reacting with O2 leads to to form Mn3+, which seems to oxidize dihydrofumarate rapidly. Cu2+ also catalyses dihydroxyfumarate oxidation, but by a mechanism that does not involve O2 leads to. 2. Peroxidase catalyses oxidation of dihydroxyfumarate at pH6; addition of H2O2 does not increase the rate. Experiments with superoxide dismutase and catalase suggest that there are two types of oxidation taking place: an enzymic, H2O2-dependent oxidation of dihydroxyfumarate by peroxidase, and a non-enzymic reaction involving oxidation of dihydroxyfumarate by O2 leads to. The latter accounts for most of the observed oxidation of dihydroxyfumarate. 3. During dihydroxyfumarate oxidation, most peroxidase is present as compound III, and the enzymic oxidation may be limited by the low rate of breakdown of this compound. 4. Addition of p-coumaric acid to the peroxidase/dihydroxyfumarate system increases the rate of dihydroxyfumarate oxidation, which is now stimulated by addition of H2O2, and is more sensitive to inhibition by catalase but less sensitive to superoxide dismutase. Compound III is decomposed in the presence of p-coumaric acid. p-Hydroxybenzoate has similar, but much smaller, effects on dihydroxyfumarate oxidation. However, salicylate affects neither the rate nor the mechanism of dihydroxyfumarate oxidation. 5. p-Hydroxybenzoate, salicylate and p-coumarate are hydroxylated by the peroxidase/dihydroxyfumarate system. Experiments using scavengers of hydroxyl radicals shown that OH is required. Ability to increase dihydroxyfumarate oxidation is not necessary for hydroxylation to occur. 相似文献
5.
M Nakamura 《Journal of biochemistry》1990,107(3):395-399
Superoxide generation in the NADPH oxidase reaction of NADPH-cytochrome P-450 reductase, demonstrated using the ESR spin trap, 5,5-dimethyl-1-pyrroline-1-oxide, increased on the addition of lactoferrin. The NADPH-lactoferrin reductase activity was assessed in terms of NADPH oxidation and oxygen consumption. From Lineweaver-Burk plots, the Km and Vmax for lactoferrin were estimated to be 13 microM and 0.5 S-1, respectively. The liberation of iron from lactoferrin was proven with the use of bathophenanthroline and by the demonstration of bleomycin-dependent DNA degradation; lactoferrin was reduced by the enzyme in the presence of NADPH. During the reaction, the ESR spectrum of the spin trap adduct changed from one characteristic of DMPO-OOH to that of DMPO-OH. The conversion was ascribed to the reaction of hydrogen peroxide with reduced lactoferrin. 相似文献
6.
R W Estabrook S Kawano J Werringloer H Kuthan H Tsuji H Graf V Ullrich 《Acta biologica et medica Germanica》1979,38(2-3):423-434
Four different experimental studies are described which were designed to evaluate the role of oxycytochrome P-450 in the formation of superoxide anions and hydrogen peroxide. The use of lipophilic copper chelates with superoxide dismutase like activity revealed that the primary site of interaction of these agents is related to the inhibition of the flavoprotein. NADPH-cytochrome P-450 reductase. Measurements of the proton assisted nucleophilic displacement of superoxide from oxycytochrome P-450 by high concentrations of sodium azide indicated an increase in the rate of hydrogen peroxide formation concomitant with the inhibition of the N-demethylation of ethylmorphine. Studies on the effect of NADH on the rate of hydrogen peroxide formation during NADPH oxidation by liver microsomes failed to reveal a stimulatory or synergistic effect in a manner analogous to results obtained during the cytochrome P-450 dependent oxidation of substrates such as ethylmorphine. These results suggest that hydrogen peroxide formation may not require the reduction of oxycytochrome P-450 to peroxycytochrome P-450. Measurements of the reduction of succinylated cytochrome c using purified cytochrome P-450 and the flavoprotein, NADPH-cytochrome P-450 reductase, directly demonstrate the formation of superoxide anions. It is concluded that oxycytochrome P-450 may decompose to generate hydrogen peroxide. 相似文献
7.
R Docampo F S Cruz A Boveris R P Muniz D M Esquivel 《Archives of biochemistry and biophysics》1978,186(2):292-297
β-Lapachone, an antimicrobial agent, was reduced by Trypanosoma cruzi epimastigotes to a semiquinone radical. It markedly increased the generation of superoxide anion and hydrogen peroxide in intact cells. Using NADH as electron donor, β-lapachone also increased significantly the rate of H2O2 generation in epimastigote homogenates. Incubation of epimastigotes with β-lapachone stimulated lipid peroxidation. 相似文献
8.
Asbestos catalyzes hydroxyl and superoxide radical generation from hydrogen peroxide 总被引:12,自引:0,他引:12
To understand chemical characteristics of the asbestos minerals which might contribute to tissue damage, the catalytic properties of three different varieties were studied. Using spin trapping techniques it was determined that crocidolite, chrysotile, and amosite asbestos were all able to catalyze the generation of toxic hydroxyl radicals from a normal byproduct of tissue metabolism, hydrogen peroxide. The iron chelator desferroxamine inhibits this reaction, indicating a major role for iron in the catalytic process, and suggesting a possible mechanism by which asbestos toxicity might be reduced. 相似文献
9.
Hydroxylation of aromatic compounds by reduced nicotinamide-adenine dinucleotide and phenazine methosulphate requires hydrogen peroxide and hydroxyl radicals, but not superoxide. 下载免费PDF全文
B Halliwell 《The Biochemical journal》1977,167(1):317-320
1. A mixture of NADH and phenazine methosulphate hydroxylates aromatic compounds at acidic pH values. 2. Hydroxylation is inhibited by catalase and by scavengers of the hydroxyl radical (-OH) but not by superoxide dismutase. 3. It is concluded that neither O2 leads to nor HO2- is sufficiently reactive to hydroxylate aromatic rings. 相似文献
10.
Y Aoyama Y Yoshida S Kubota H Kumaoka A Furumichi 《Archives of biochemistry and biophysics》1978,185(2):362-369
NADPH-cytochrome c reductase of yeast microsomes was purified to apparent homogeneity by solubilization with sodium cholate, ammonium sulfate fractionation, and chromatography with hydroxylapatite and diethylaminoethyl cellulose. The purified preparation exhibited an apparent molecular weight of 83,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The reductase contained one molecule each of flavin-adenine dinucleotide and riboflavin 5′-phosphate, though these were dissociative from the apoenzyme. The purified reductase showed a specific activity of 120 to 140 μmol/min/mg of protein for cytochrome c as the electron acceptor. The reductase could reduce yeast cytochrome P-450, though with a relatively slow rate. The reductase also reacted with rabbit liver cytochrome P-450 and supported the cytochrome P-450-dependent benzphetamine N-demethylation. It can, therefore, be concluded that the NADPH-cytochrome c reductase is assigned for the cytochrome P-450 reductase of yeast. The enzyme could also reduce the detergent-solubilized cytochrome b5 of yeast. So, this reductase must contribute to the electron transfer from NADPH to cytochrome b5 that observed in the yeast microsomes. 相似文献
11.
Superoxide generation, assessed as the rate of acetylated cytochrome c reduction inhibited by superoxide dismutase, by purified NADPH cytochrome P-450 reductase or intact rat liver microsomes was found to account for only a small fraction of their respective NADPH oxidase activities. DTPA-Fe3+ and EDTA-FE3+ greatly stimulated NADPH oxidation, acetylated cytochrome c reduction, and O(2) production by the reductase and intact microsomes. In contrast, all ferric chelates tested caused modest inhibition of acetylated cytochrome c reduction and O(2) generation by xanthine oxidase. Although both EDTA-Fe3+ and DTPA-Fe3+ were directly reduced by the reductase under anaerobic conditions, ADP-Fe3+ was not reduced by the reductase under aerobic or anaerobic conditions. Desferrioxamine-Fe3+ was unique among the chelates tested in that it was a relatively inert iron chelate in these assays, having only minor effects on NADPH oxidation and/or O(2) generation by the purified reductase, intact microsomes, or xanthine oxidase. Desferrioxamine inhibited microsomal lipid peroxidation promoted by ADP-Fe3+ in a concentration-dependent fashion, with complete inhibition occurring at a concentration equal to that of exogenously added ferric iron. The participation of O(2) generated by the reductase in NADPH-dependent lipid peroxidation was also investigated and compared with results obtained with a xanthine oxidase-dependent lipid peroxidation system. NADPH-dependent peroxidation of either phospholipid liposomes or rat liver microsomes in the presence of ADP-Fe3+ was demonstrated to be independent of O(2) generation by the reductase. 相似文献
12.
L Z Karpetz N V Adrianov I I Karuzina Ch S Dzhuzenova A I Archakov 《Biulleten' eksperimental'no? biologii i meditsiny》1988,105(5):547-549
Inactivation rate of purified oligomeric cytochrome P-450 LM2 has been investigated in glucose oxidase system and under the action of exogenous hydrogen peroxide (400 microM). It has been found that hydrogen peroxide has a distinct inactivating effect on cytochrome P-450. The enzyme inactivation is accompanied by the loss of heme and the decrease in SH-group content in the protein molecule. Benzphetamine, a substrate specific for this enzyme isoform, exerts a protective effect by decreasing the rate of cytochrome P-450 inactivation and SH-group oxidation. Similar results have been obtained during the investigation of cytochrome P-450 inactivation in the monomerized system. It has been found that the inactivation process is accompanied by the formation of the enzyme aggregates. The changes in the aggregate state are due to the formation of intermolecular covalent bonds. 相似文献
13.
Phenyl N-tert-butylnitrone (PBN) is widely used as a spin trapping agent, but is not useful detecting hydroxyl radicals because the resulting spin adduct is unstable. However, hydroxyl radicals could attack the phenyl ring to form stable phenolic products with no electron paramagnetic resonance signal, and this possibility was investigated in the present studies. When PBN was added to a Fenton reaction system composed of 25 mM H(2)O(2) and 0.1 mM FeSO(4), 4-hydroxyPBN was the primary product detected, and benzoic acid was a minor product. When the Fe(2+) concentration was increased to 1.0 mM, 4-hydroxyPBN concentrations increased dramatically, and smaller amounts of benzoic acid and 2-hydroxyPBN were also formed. Although PBN is extensively metabolized after administration to animals, its metabolites have not been identified. When PBN was incubated with rat liver microsomes and a reduced nicotinamide adenine dinculeotide phosphate (NADPH)-generating system, 4-hydroxyPBN was the only metabolite detected. When PBN was given to rats, both free and conjugated 4-hydroxyPBN were readily detected in liver extracts, bile, urine, and plasma. Because 4-hydroxyPBN is the major metabolite of PBN and circulates in body fluids, it may contribute to the pharmacological properties of PBN. But 4-hydroxyPBN formation cannot be used to demonstrate hydroxyl radical formation in vivo because of its enzymatic formation. 相似文献
14.
John M.C. Gutteridge 《FEBS letters》1982,150(2):454-458
Iron(II) salts in aqueous solution, or iron(III) salts in the presence of an O√−2 generating system, can activate dioxygen to produce hydroxyl radicals. These are detected indirectly by their ability to degrade deoxyribose with the formation of thiobarbituric acid-reactive (TBA) products. Iron salts also catalyse the peroxidation of phospholipids resulting in the formation of TBA-reactive products. Hydroxyl radicals were responsible for the degradation of deoxyribose but not for the observed peroxidation of phospholipid. The function of O√−2 in both deoxyribose degradation and phospholipid peroxidation seems to be that of reducing iron(III) into iron(II). 相似文献
15.
Rotation of cytochrome P-450. II. Specific interactions of cytochrome P-450 with NADPH-cytochrome P-450 reductase in phospholipid vesicles 总被引:2,自引:0,他引:2
J Gut C Richter R J Cherry K H Winterhalter S Kawato 《The Journal of biological chemistry》1982,257(12):7030-7036
Purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase were co-reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles using a cholate dialysis technique. The co-reconstitution of the enzymes was demonstrated in proteoliposomes fractionated by centrifugation in a glycerol gradient. The proteoliposomes catalyzed the N-demethylation of a variety of substrates. Rotational diffusion of cytochrome P-450 was measured by detecting the decay of absorption anisotropy r(t), after photolysis of the heme.CO complex by a vertically polarized laser flash. The rotational mobility of cytochrome P-450, when reconstituted alone, was found to be dependent on the lipid to protein ratio by weight (L/P450) (Kawato, S., Gut, J., Cherry, R. J., Winterhalter, K. H., and Richter, C. (1982) J. Biol. Chem. 257, 7023-7029). About 35% of cytochrome P-450 was immobilized and the rest was rotating with a mean rotational relaxation time phi 1 of about 95 mus in L/P450 = 1 vesicle. In L/P450 = 10 vesicles, about 10% of P-450 was immobile and the rest was rotating with phi 1 congruent to 55 mus. Co-reconstitution of equimolar amounts of NADPH-cytochrome P-450 reductase into the above vesicles results in completely mobile cytochrome P-450 with a phi 1 congruent to 40 mus. Only a small decrease in the immobile fraction of cytochrome P-450 is observed when the molar ratio of cytochrome P-450 to the reductase is 5. The results suggest the formation of a monomolecular 1:1 complex between cytochrome P-450 and NADPH-cytochrome P-450 reductase in the liposomes. 相似文献
16.
Cytochrome P-450 and NADPH-cytochrome P-450 REDUctase, both purified from liver microsomes of phenobarbital-pretreated rabbits, have been incorporated into the membrane of phosphoaditylcholine vesicles by the cholate dialysis method. The reduction of cytochrome P-450 by NADPH in this system is biphasic, consisting of two first-order reactions. The rate constant of the fast phase, in which 80--90% of the total cytochrome is reduced, increases as the molar ratio of the reductase to the cytochrome is increased at a fixed ratio of the cytochrome to phosphatidylcholine, suggesting that the rate-limiting step of the fast phase is the interaction between the reductase and the cytochrome. The rate constant of the fast phase also increases when the amount of phosphatidylcholine, relative to those of the two proteins, is decreased. This latter observation suggests that the interaction between the two proteins is effected by their random collision caused by their lateral mobilities on the plane of the membrane of phosphatidylcholine vesicles. The rate constant of the slow phase as well as the fraction of cytochrome P-450 reducible in the slow phase, on the other hand, remains essentially constant even upon alteration in the ratio of the reductase to the cytochrome or in that of the two proteins to phosphatidylcholine. No satisfactory explanation is as yet available for the cause of the slow-phase reduction of cytochrome P-450. The overall activity of benzphetamine N-demethylation catalyzed by the reconstituted vesicles responds to changes in the composition of the sysTEM IN A SIMILAR WAY TO THE FAST-PHASE REDUCTION OF CYTOCHROME P-450, though the latter is not the rate-limiting step of the overall reaction. 相似文献
17.
F P Guengerich 《Biochimica et biophysica acta》1979,577(1):132-141
Highly-purified rat liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase (NADPH-ferricytochrome oxidoreductase, EC 1.6.2.4) preparations gave rise to a large number of bands under a variety of isoelectric focusing conditions, as observed after staining for either zymogen or protein. The binding patterns were not independent of sample concentration and position of application, and eluted bands did not refocus as expected. The artifactual heterogeneity is attributed to strong protein-protein interactions and perhaps to complexation of proteins with carrier ampholytes. These findings suggest caution in using isoelectric focusing to resolve mixtures of membrane proteins. 相似文献
18.
Solubilized NADPH-cytochrome P-450 reductase has been purified from liver microsomes of phenobarbital-treated rats. When added to microsomes, the reductase enhances the monoxygenase, such as aryl hydrocarbon hydroxylase, ethoxycoumarin O-dealkylase, and benzphetamine N-demethylase, activities. The enhancement can be observed with microsomes prepared from phenobarbital- or 3-methylcholanthrene-treated, or non-treated rats. The added reductase is believed to be incorporated into the microsomal membrane, and the rate of the incorporation can be assayed by measuring the enhancement in ethoxycoumarin dealkylase activity. It requires a 30 min incubation at 37 degrees C for maximal incorporation and the process is much slower at lower temperatures. The temperature affects the rate but not the extent of the incorporation. After the incorporation, the enriched microsomes can be separated from the unbound reductase by gel filtration with a Sepharose 4B column. The relationship among the reductase added, reductase bound and the enhancement in hydroxylase activity has been examined. The relationship between the reductase level and the aryl hydrocarbon hydroxylase activity has also been studied with trypsin-treated microsomes. The trypsin treatment removes the reductase from the microsomes, and the decrease in reductase activity is accompanied by a parallel decrease in aryl hydrocarbon hydroxylase activity. When purified reductase is added, the treated microsomes are able to gain aryl hydrocarbon hydroxylase activity to a level comparable to that which can be obtained with normal microsomes. The present study demonstrates that purified NADPH-cytochrome P-450 reductase can be incorporated into the microsomal membrane and the incorporated reductase can interact with the cytochrome P-450 molecules in the membrane, possibly in the same mode as the endogenous reductase molecules. The result is consistent with a non-rigid model for the organization of cytochrome P-450 and NADPH-cytochrome P-450 reductase in the microsomal membrane. 相似文献
19.
A fluorescent probe, N-(1-anilinonaphth-4-yl)-maleimide (ANM), was specifically labeled to SH group(s) in the hydrophilic moiety of NADPH-cytochrome P-450 reductase at a ratio of 1 +/- 0.1 ANM/mol of protein. The ANM-labeled reductase and P-450 were reconstituted in phosphatidylcholine-phosphatidylethanolamine-phosphatidylserine vesicles in which all of the enzymes were functionally active. The reconstitution of the mixed-function oxidase system was found to be strongly dependent on both the lipid to protein molar ratio and phospholipid composition. The interactions of ANM-labeled reductase with P-450 in proteoliposomes were investigated by perturbation of the fluorescence of ANM. Upon incorporation of P-450 into the phospholipids vesicles (ANM-reductase/P-450/lipids identical to 1:1.4:800), a significant decrease of total fluorescence intensity and slight increase of emission anisotropy of ANM were observed. In the average fluorescence lifetime of ANM bound with reductase, an appreciable change was shown between the absence and presence of P-450 in the vesicles. These data provide clear evidence that significant molecular interactions occur between the two proteins in a membranous reconstituted system. 相似文献
20.
ESR studies using spin traps, 5,5-dimethylpyrroline-N-oxide and alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone, revealed that hydroxyl radical adducts are produced by the decomposition of hydrogen peroxide in the presence of nickel(II) oligopeptides. Order of catalytic activities of nickel(II) oligopeptides used in the production of hydroxyl radical adducts was tetraglycine greater than pentaglycine greater than triglycine greater than GlyGly, GlyHis. Ni(II) GlyGlyHis plus hydrogen peroxide produced superoxide in addition to hydroxyl radical adduct. Trapping experiments with 2,2,6,6-tetramethyl-4-piperidone suggested that singlet oxygen was generated by the reaction of hydrogen peroxide with Ni(II) GlyGlyHis, but not in the case of tetraglycine, pentaglycine, triglycine, GlyGly or GlyHis. 相似文献