首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the presence of Li+, glucose, 2-ketoisocaproate and carbamylcholine induced the rapid formation of 3H-inositol phosphates in rat pancreatic islets prelabelled with 3H-inositol. The production of labelled inositol phosphates continued up to 20 min of incubation. Glibenclamide and ionophore A23187 had no significant effect on labelled inositol phosphate production. The effects of carbamylcholine and to a lesser extent, glucose were found to persist in the absence of added Ca2+, but both were strongly inhibited by excess EGTA. In general, the rise in 3H-inositol phosphate production was associated with a fall in lipid bound radioactivity, although the latter was found to occur more slowly, and was of a smaller magnitude than labelled inositol phosphate formation. The results suggest that nutrient secretagogues and cholinergic agonists stimulate hydrolysis of phosphoinositides in pancreatic islets by a phospholipase C mechanism. This effect is Ca2+-dependent, but probably not triggered by increased Ca2+ uptake into the islet.  相似文献   

2.
Endogenous ATP is thought to play a key regulatory role in nutrient-stimulated insulin release. The present study deals with the effect of exogenous ATP and its stable analog alpha, beta-methylene ATP upon pancreatic islet function. Both alpha, beta-methylene ATP (5.0 microM to 0.2 mM) and ATP (0.3-3.0 mM) caused a rapid and concentration-related increase in insulin output by rat islets incubated or perfused at an intermediate concentration of D-glucose (8.3 mM). The effect of the ATP analog faded out at both lower and higher D-glucose concentrations. In the presence of 8.3 mM D-glucose, ATP also increased both 86Rb and 45Ca outflow from prelabelled islets. The cationic response to ATP persisted in the absence of extracellular Ca2+ and, hence, was reminiscent of that evoked by cholinergic agents. Like carbamylcholine, ATP caused a dose-related increase in the production of [3H]inositol phosphates from prelabelled islets or tumoral islet cells (RINm5F line). The latter effect was duplicated by alpha, beta-methylene ATP and unaffected by atropine. It is speculated that ATP, liberated together with insulin at the exocytotic site, might participate in a positive feedback control of insulin release.  相似文献   

3.
《Journal of Physiology》1998,92(1):31-35
Perifused rat pancreatic islets, prelabelled with 45Ca, were exposed for 90 min to a medium containing 30 mM K+, 0.25 mM diazoxide and 0.5 mM EGTA, but deprived of CaCl2. Either verapamil (0.05 mM) or Cd2+ (0.05 mM) were also present in the perifusate. Under these conditions a rise in D-glucose concentrations from either 2.8 to 16.7 mM or zero to 8.3 mM increased both 45Ca outflow and insulin release, after an initial and transient decrease in effluent radioactivity. These findings suggest that, in islets depolarised by exposure to a high extracellular concentration of K+, D-glucose provokes an intracellular redistribution of Ca2+ ions and subsequent stimulation of insulin release. The functional response to D-glucose is apparently not attributable to either the closing of ATP-sensitive K+ channels, which were actually activated by diazoxide, or stimulation of Ca2+ influx, which was prevented by the absence of extracellular Ca2+. The present experimental design thus reveals a novel component of the glucose-induced remodelling of Ca2+ fluxes in islet cells. Such an effect might also be operative under physiological conditions, when the hexose leads to depolarisation of the islet B-cells.  相似文献   

4.
Extracellular ATP caused a dose-dependent accumulation of inositol phosphates and a rise in cytosolic free Ca2+ ([Ca2+]i) in C6 glioma cells with an EC50 of 60±4 and 10±5 M, respectively. The threshold concentration of ATP (3 M) for increasing [Ca2+]i was approximately 10-fold less than that for stimulating phosphoinositide (PI) turnover. The PI response showed a preference for ATP; ADP was about 3-fold less potent than ATP but had a comparable maximal stimulation (11-fold of the control). AMP and adenosine were without effect at concentrations up to 1 mM. ATP-stimulated PI metabolism was found to be partially dependent on extracellular Ca2+ and Na+ but was resistant to tetrodotoxin, saxitoxin, amiloride, ouabain, and inorganic blockers of Ca2+ channels (Co2+, Mn2+, La3+, or Cd2+). In Ca2+-free medium, ATP caused only a transient increase in [Ca2+]i as opposed to a sustained [Ca2+]i increase in normal medium. The ATP-induced elevation of [Ca2+]i was resistant to Na+ depletion and treatment with saxitoxin, verapamil and nisoldipine, but was attentuated by La3+. The differences in the characteristics of ATP-caused P1 hydrolysis and [Ca2+]i rise suggest that ATP receptors are independently coupled to phospholipase C and receptor-gated Ca2+ channels. Because of the robust effect of ATP in stimulating PI turnover and the apparent absence of P1-purinergic receptors, the C6 glioma cell line provides a useful model for investigating the transmembrane signalling pathway induced by extracellular ATP. The mechanisms underlying the unexpected finding of [Na+]o dependency for ATP-induced PI turnover require further investigation.Abbreviations PI phosphoinositide - [Ca2+]i cytosolic free Ca2+ concentration - PDBu phorbol 12, 13-dibutyrate - PSS physiological saline solution - IP inositol phosphates - IP1 inositol monophosphate - IP2 inositol bisphosphate - IP3 inositol trisphosphate - IP4 inositol (1,3,4,5) tetrakisphosphate - PLC phospholipase C  相似文献   

5.
In this study the mass of polyphosphoinositides as well as the turnover of [3H]inositol phospholipids and [3H]inositol phosphates during ischaemia and short periods of reperfusion were studied in the isolated perfused rat heart. Since the phosphoinositides located within the sarcolemma are precursors for release of inositoltrisphosphate (InsP3) and diacylglycerol, sarcolemmal membranes (rather than whole tissue) isolated at the end of the experimental procedure, were used. Hearts were prelabelled with [3H]inositol and subsequently perfused with 10 mM LiCI to block the phosphatidylinositol (PI) pathway. The results showed that 20 min of global ischaemia depressed the amount of [3H]inositol present in both sarcolemmal phosphatidylinositol-4-phosphate (PI-4-P) and phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2), as well as in the cytosolic [3H]inositol phosphates, [3H]InsP2 and [3H]InsP3. The mass of the sarcolemmal inositol phospholipids remained unchanged during ischaemia. Reperfusion caused an immediate (within 30 sec) increase in the amount of [3H]inositol in sarcolemmal PI, PI-4-P and PI-4,5-P2. PI-4-P levels showed a transient increase after 30 seconds postischaemic reperfusion, while the mass of the other sarcolemmal inositol phospholipids, PI and PI-4,5-P2, remained unchanged. [3H]Insp, [3H]InsP2 and [3H]InsP3 also increased significantly in comparison to ischaemic hearts after only 30 sec postischaemic reperfusion.In summary, the results obtained indicate inhibition of the PI pathway during ischaemia with an immediate significant stimulation upon reperfusion. In view of the capacity of InsP3 to mobilize Ca2+ the possibility exists that stimulation of this pathway during reperfusion may play a role in the intracellular Ca2+ overload, characteristic of postischaemic reperfusion.  相似文献   

6.
Abstract: Previous results showed that within 30 s after glutamate stimulation of cultured rat hippocampal pyramidal neurons there occurred an elevation of Ca2+ and diacylglycerol, and the phosphorylation of three acidic protein kinase C substrates, i.e., an 87-kDa protein known as myristoylated alanine-rich C kinase substrate and a 120-and a 48-kDa protein. In addition, it was suggested that a metabotropic-type glutamate receptor might be responsible for the phosphorylation observed. This work examines the ability of metabotropic and ionotropic glutamate receptor agonists to quickly activate phospholipases in 1.26 mM versus 50 nM extracellular Ca2+ by measuring the generation of inositol phosphates. NMDA, quisqualate, and trans-(±)-1-amino-1,3-cyclopentanedicarboxylic acid did not stimulate the generation of inositol phosphates in the presence of normal or low extracellular Ca2+ in pyramidal neurons. Kainate stimulated the production of inositol phosphates in the presence of 1.26 mM extracellular Ca2+ but not in 50 nM extracellular Ca2+. Other than glutamate, only ibotenate was able to stimulate the generation of inositol phosphates in both normal and low extracellular Ca2+. The maximal response to ibotenate was approximately equal to that of glutamate, when pyramidal neurons were stimulated in 50 nM extracellular Ca2+. The generation of inositol phosphates by glutamate and ibotenate could be partially blocked (50–60% reduction) by pretreatment of neurons with pertussis toxin (250 ng/ml),-suggesting that a GTP-binding protein might be involved. In addition, ibotenate stimulated the immediate phosphorylation of the same three protein kinase C substrates as glutamate. The NMDA receptor blocker MK-801 had no effect on this phosphorylation. These results suggest that the stimulation of phosphorylation in pyramidal neurons by glutamate occurs predominantly through the activation of an ibotenate-selective metabotropic glutamate receptor.  相似文献   

7.
Glucose (20 mM) and 4-methyl-2-oxopentanoate (10 mM) both caused a pronounced stimulation of insulin release and of [3H]inositol phosphate production in rat pancreatic islets prelabelled with myo-[3H]inositol. Secretory responses to these nutrients were markedly impaired by lowering the Ca2+ concentration of the incubation medium to 10(-4)M or less, whereas stimulated inositol phosphate production was sensitive to Ca2+ within the range 10(-6)-10(-4)M. Inositol phosphate formation in response to carbamoylcholine was also found to be dependent on the presence of 10(-5)M-Ca2+ or above. Raising the concentration of K+ in the medium resulted in a progressive, Ca2+-dependent stimulation of inositol phosphate production in islets, although no significant stimulation of insulin release was observed. In islets prelabelled with myo[3H]inositol, then permeabilized by exposure to digitonin, [3H]inositol phosphate production could be triggered by raising the Ca2+ concentration from 10(-7) to 10(-5)M. This effect was dependent on the concentration of ATP and the presence of Li+, and involved detectable increases in the levels of InsP3 and InsP2 as well as InsP. A potentiation of inositol phosphate production by carbamoylcholine was observed in permeabilized islets at lower Ca2+ concentrations, although nutrient stimuli were ineffective. No significant effects were observed with guanine nucleotides or with neomycin, although NADH produced a modest increase and adriamycin a small inhibition of inositol phosphate production in permeabilized islets. These results strongly suggest that Ca2+ ions play an important role in the stimulation of inositol lipid metabolism in islets in response to nutrient secretagogues, and that inositide breakdown may actually be triggered by Ca2+ entry into the islet cells.  相似文献   

8.
Many cellular processes, including pulsatile release of insulin, are triggered by increase of cytoplasmic Ca2+. This study examines how somatostatin affects glucose generation of cytoplasmic Ca2+ oscillations in mouse islets in absence and presence of tolbutamide blockade of the KATP channels. Ca2+ was measured with dual wavelength microflurometry in isolated islets loaded with the indicator Fura-2. Rise of glucose from 3 to 20 mM evoked introductory lowering of Ca2+ prolonged by activation of somatostatin receptors. During continued superfusion exposure to somatostatin triggered oscillations mediated by periodic increase from the basal level (absence of tolbutamide) or by periodic interruption of an elevated level (presence of tolbutamide). In the latter situation the oscillations were transformed into sustained elevation by activation of muscarinic receptors (acetylcholine) or increase of cyclic AMP (IBMX, 8-bromo-cyclic AMP, forskolin). The observed effect of cyclic AMP raises the question whether high proportions of the glucagon-producing α-cells promote steady-state elevation of Ca2+. In support for this idea somatostatin was found to trigger glucose-induced Ca2+ oscillations essentially in small islets that contain very few α-cells. The results indicate that somatostatin promotes glucose generation of Ca2+oscillations with similar characteristics both in the absence and presence of functional KATP channels.  相似文献   

9.
A stepwise rise in extracellular glucose concentration from 8.3 to 16.7 mM paradoxically increases the outflow of 86Rb from prelabelled pancreatic islets, as if the permeability to K+ of the plasma membrane was suddenly and sustainedly increased. The mechanisms underlying this paradoxical response was investigated by exposing the islets to agents blocking either the Ca2+-activated or voltage-sensitive K+ channels. At concentrations exerting similar inhibitory effects upon the K+ permeability of glucose-deprived islets, tetraethylammonium failed to affect, while quinine severely impaired the increase in 86Rb efflux induced by the rise in glucose concentration. None of these drugs impeded the stimulation of Ca2+ influx evoked by the rise in glucose concentration. These findings suggest that glucose, in the 8.3–16.7 mM range, facilitates K+ efflux from the pancreatic B-cell by stimulating a Ca2+-sensitive modality of K+ extrusion.  相似文献   

10.
1. Because cellular pools of phosphatidylinositol phosphate and phosphatidylinositol bisphosphate turn over rapidly during phospholipase C stimulation, the continuing production of inositol phosphates requires continuing synthesis from phosphatidylinositol of the polyphosphoinositides. In the present study in adrenal chromaffin cells, we examined the effects of nicotinic stimulation and depolarization in intact cells and micromolar Ca2+ in permeabilized cells on the levels of labeled polyphosphoinositides. We compared the effects to muscarinic stimulation in intact cells and GTP gamma S in permeabilized cells. 2. Nicotinic stimulation, elevated K+, and muscarinic stimulation cause similar production of inositol phosphates (D. A. Eberhard and R. W. Holz, J. Neurochem. 49:1634-1643, 1987). Nicotinic stimulation and elevated K+ but not muscarinic stimulation increased the levels of [3H]inositol-labeled phosphatidylinositol phosphate by 30-60% and [3H]phosphatidylinositol bisphosphate by 25-30%. The increase required Ca2+ in the medium, was maximal by 1-2 min, and was not preceded by an initial decrease in phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. 3. In digitonin-permeabilized cells, Ca2+ caused as much as a twofold increase in [3H]phosphatidylinositol phosphate and [3H]phosphatidylinositol bisphosphate. Similarly, Ca2+ enhanced the production of [32P]phosphatidylinositol phosphate and [32P]phosphatidylinositol bisphosphate in the presence of [gamma-32P]ATP. In contrast, GTP gamma S in permeabilized cells decreased polyphosphoinositides in the presence or absence of Ca2+. 4. The ability of Ca2+ to increase the levels of the polyphosphoinositides decayed with time after permeabilization. The effect of Ca2+ was increased when phosphoesterase and phospholipase C activities were inhibited by neomycin. 5. These observations suggest that Ca2+ specifically enhances polyphosphoinositide synthesis at the same time that it activates phospholipase C.  相似文献   

11.
Cells of the murine mast-cell clone MC9 grown in suspension culture were sensitized with an anti-DNP (dinitrophenol) IgE and subsequently prelabelled by incubating with [32P]Pi. Stimulation of these cells with DNP-BSA (bovine serum albumin) caused marked decreases in [32P]polyphosphoinositides (but not [32P]phosphatidylinositol) with concomitant appearance of [32P]phosphatidic acid. Whereas phosphatidylinositol monophosphate levels returned to baseline values after prolonged stimulation, phosphatidylinositol bisphosphate levels remained depressed. Stimulation of sensitized MC9 cells with DNP-BSA increased rates of incorporation of [32P]Pi into other phospholipids in the order: phosphatidylcholine greater than phosphatidylinositol greater than phosphatidylethanolamine. In sensitized cells prelabelled with [3H]inositol, release of inositol monophosphate, inositol bisphosphate and inositol trisphosphate, was observed after stimulation with DNP-BSA. When Li+ was added to inhibit the phosphatase activity that hydrolysed the phosphomonoester bonds in the sugar phosphates, greater increases were observed in all three inositol phosphates, particularly in inositol trisphosphate. The IgE-stimulated release of inositol trisphosphate was independent of the presence of extracellular Ca2+. In addition, the Ca2+ ionophore A23187 caused neither the decrease in [32P]polyphosphoinositides nor the stimulation of the release of inositol phosphates. These results demonstrate that stimulation of the MC9 cell via its receptor for IgE causes increased phospholipid turnover, with effects on polyphosphoinositides predominating. These data support the hypothesis that hapten cross-bridging of IgE receptors stimulates phospholipase C activity, which may be an early event in stimulus-secretion coupling of mast cells. The results with the Ca2+ ionophore A23187 indicate that an increase in intracellular Ca2+ alone is not sufficient for activation of this enzyme.  相似文献   

12.
In pancreatic islets, insulin secretion occurs via synchronous elevation of Ca2+ levels throughout the islets during high glucose conditions. This Ca2+ elevation has two phases: a quick increase, observed after the glucose stimulus, followed by prolonged oscillations. In these processes, the elevation of intracellular ATP levels generated from glucose is assumed to inhibit ATP-sensitive K+ channels, leading to the depolarization of membranes, which in turn induces Ca2+ elevation in the islets. However, little is known about the dynamics of intracellular ATP levels and their correlation with Ca2+ levels in the islets in response to changing glucose levels. In this study, a genetically encoded fluorescent biosensor for ATP and a fluorescent Ca2+ dye were employed to simultaneously monitor the dynamics of intracellular ATP and Ca2+ levels, respectively, inside single isolated islets. We observed rapid increases in cytosolic and mitochondrial ATP levels after stimulation with glucose, as well as with methyl pyruvate or leucine/glutamine. High ATP levels were sustained as long as high glucose levels persisted. Inhibition of ATP production suppressed the initial Ca2+ increase, suggesting that enhanced energy metabolism triggers the initial phase of Ca2+ influx. On the other hand, cytosolic ATP levels did not fluctuate significantly with the Ca2+ level in the subsequent oscillation phases. Importantly, Ca2+ oscillations stopped immediately before ATP levels decreased significantly. These results might explain how food or glucose intake evokes insulin secretion and how the resulting decrease in plasma glucose levels leads to cessation of secretion.  相似文献   

13.
Previous studies have shown that external calcium (Ca2+) is required for the effects of angiotensin II (AII) on aldosterone secretion in adrenal glomerulosa zone. Using bovine adrenal glomerulosa cells prepared by collagenase dispersion, we examined whether external Ca2+ is required for the activation of phospholipase C by AII. Adrenal glomerulosa cells were exposed to Ca-EGTA buffered media to provide accurate estimates of external free Ca2+ concentrations. Phospholipase C activation was evaluated by measurement of inositol phosphates production. At 0.1 M Ca2+ and less, sustained AII effects on inositol monophosphate (IP), inositol bisphosphate (IP2) and inositol trisphosphate (IP3) were markedly inhibited. Increasing the Ca2+ concentration to 50kM or greater fully restored All-induced inositol phosphates production. AII-induced increases in cytosolic Ca2+ measured by Quin-2 fluorescence, were diminished at lower external Ca2+ concentrations. Treating adrenal glomerulosa cells with Chelex-100, a strong Ca2+ binding resin, blocked early activation of phospholipase C by AII. Inhibition of IP3 production was also observed when inhibitors of Ca2+ movement across the plasma membrane were used, viz., La2+, TMB-8 and nifedipine. The requirement for Ca2+ during AII-induced activation of phospholipase C may be explained, at least partly by a requirement for Ca2+ at a site between the AII receptor and Phospholipase C.  相似文献   

14.
Abstract: Fura-2 digital imaging microfluorimetry was used to evaluate the Ca2+ signals generated in single clonal human neuroepithelioma cells (SK-N-MCIXC) in response to agonists that stimulate phosphoinositide hydrolysis. Addition of optimal concentrations of either endothelin-1 (ET-1), ATP, oxotremorine-M (Oxo-M), or norepinephrine (NE) all resulted in an increase in the concentration of cytosolic calcium (Ca2+i) but of different magnitudes (ET-1 = ATP> NE). The Ca2+ signals elicited by the individual agonists also differed from each other in terms of their latency of onset, rate of rise and decay, and prevalence of a sustained phase of Ca2+ influx. The Ca2+ signals that occurred in response to ATP had a shorter latency and more rapid rates of rise and decay than those observed for the other three agonists. Furthermore, a sustained plateau phase of the Ca2+ signal, which was characteristic of the response to Oxo-M, was observed in <40% of cells stimulated with ET-1 and absent from Ca2+ signals elicited after NE addition. Removal of extracellular Ca2+ enhanced the rate of decay of Ca2+ signals generated by ATP, ET-1, or Oxo-M and, when evident, abolished the sustained phase of Ca2+ influx. In the absence of extracellular Ca2+, NE elicited asynchronous multiple Ca2+ transients. In either the absence or presence of extracellular Ca2+,>94% of cells responded to ET-1 or ATP, whereas corresponding values for Oxo-M and NE were ~74 and ~48%. Sequential addition of agonists to cells maintained in a Ca2+-free buffer indicated that each ligand mobilized Ca2+ from a common intracellular pool. When monitored as a release of a total inositol phosphate fraction, all four agonists elicited similar (four- to sixfold) increases in phosphoinositide hydrolysis. However, the addition of ET-1 or ATP resulted in larger increases in the net formation of inositol 1,4,5-trisphosphate than did either Oxo-M or NE. These results indicate that, in SK-N-MCIXC cells, the characteristics of both Ca2+ signaling and inositol phosphate production are agonist specific.  相似文献   

15.
Rat pancreatic fragments and acinar preparations were incubated in vitro to characterize further the changes in phosphoinositide metabolism that occur during secretagogue action. Two distinct responses were discernible. The first response, most notably involving a decrease in phosphatidylinositol content, was (a) observed at lower carbachol concentrations in dose-response studies, (b) inhibited by incubation in Ca2+-free media containing 1 mM EGTA, (c) associated with increases in inositol monophosphate production, and (d) provoked by all tissue secretagogues (carbachol, cholecystokinin, secretin, insulin, dibutyryl cAMP and the ionophore A23187), regardless of whether their mechanism of action primarily involved Ca2+ mobilization or cAMP generation. This decrease in phosphatidylinositol content was at least partly due to phospholipase C (and/or D) activation, as evidenced by the increase in inositol monophosphate. The second response, most notably involving markedly increased incorporation of 32PO4 into phosphatidic acid and phosphatidylinositol, was (a) observed at higher carbachol concentrations, (b) not influenced by incubation in Ca2+-free media containing 1 mM EGTA, and (c) associated with increases in inositol triphosphate production. This 32PO4 turnover response was probably largely the result of phospholipase C-mediated hydrolysis of phosphatidylinositol 4′,5′-diphosphate, which, as shown previously, also occurs at higher carbachol concentrations and is insensitive to comparable EGTA-induced Ca2+ deficiency. This phosphatidylinositol 4′,5′-diphosphate hydrolysis response was only observed in the action of agents (carbachol and cholecystokinin) which mobilize Ca2+ via activation of cell surface receptors. The present results indicate that phosphatidylinositol and phosphatidylinositol 4′,5′-diphosphate hydrolysis are truly separable responses to secretagogues acting in the rat pancreas. Furthermore, phosphatidylinositol 4′,5′-diphosphate, rather than phosphatidylinositol hydrolysis is more likely to be associated with receptor activation and Ca2+ mobilization.  相似文献   

16.
Regulation of nitric oxide (NO) formation is critical to ensure maintenance of appropriate cellular concentrations of this labile, signaling molecule. This study investigated the role exogenous and endogenously produced NO have in feeding back to regulate NO synthesis in intact cells. Two NO donors inhibited activation of neuronal NO synthase (nNOS) in response to the muscarinic receptor agonist carbachol in Chinese hamster ovary (CHO) cells stably transfected with the M1 muscarinic receptor and nNOS. The presence of the NO scavenger [2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide · potassium salt] (C-PTIO) potentiated carbachol-induced activation of nNOS in transfected CHO cells. C-PTIO also potentiated nNOS activity in response to the Ca2+ ionophore ionomycin. In contrast, the NO scavenger oxyhemoglobin depressed carbachol- and ionomycin-induced NO formation. These discrepant results suggest that it is unlikely that endogenously produced NO induces feed back inhibition at the level of nNOS activation itself. Exogenous sources of NO inhibited carbachol-induced inositol phosphates formation. However, endogenously produced NO did not appear to feed back to regulate phosphoinositide hydrolysis as there was no difference in [3H]inositol phosphates formation between cells that do or do not express nNOS. There was also no change in carbachol-induced [3H]inositol phosphates formation in the presence or absence of a NOS inhibitor or the NO scavenger C-PTIO. A decrease in the carbachol-mediated transient Ca2+ peak was observed in cells that express nNOS as compared to cells lacking the enzyme, suggesting that endogenous NO might inhibit receptor mediated Ca2+ signaling. This conclusion, however, was not supported by the lack of ability of a NOS inhibitor to modulate carbachol-induced Ca2+ elevations. Taken together, these results highlight differences in the regulation of the nNOS activation cascade by endogenous vs. exogenous sources of NO.  相似文献   

17.
The effect of extracellular ATP was studied in PC12 cells, a neurosecretory line that releases ATP. The addition of micromolar concentrations of ATP to PC12 cells evoked a transient increase in the cytosolic free Ca2+ concentration ([Ca2+]i), as measured with the Ca2+-dye fura 2. AMP and adenosine were without effect, ruling out the involvement of P1 receptors in mediating this response. The increase in [Ca2+]i was reduced in calcium-free media and virtually eliminated by the addition of EGTA, suggesting that calcium influx was the primary response initiated by extracellular ATP. Nucleotide triphosphates such as UTP and, to a lesser degree, ITP also evoked an increase in [Ca2+]i while GTP and CTP had little effect. In order to identify the receptor subtype mediating this response, the efficacy of ATP and ATP cogeners was assessed. The rank order potency was ATP > adenosine 5′-[γ-thio]triphosphate > ADP > 2-methylthioadenosine triphosphate (2-MeSATP) ~ adenosine 5′-[β-thio]diphosphate ? adenosine 5′-[αβ-methylene] triphosphate, adenosine 5′-[βγ-imido]triphosphate. This profile is not characteristic of either the P2X or the conventional P2Y receptors. The Ca2+ response exhibited desensitization to ATP that was dependent on the extracellular metabolism of ATP. UTP was equally effective in desensitizing the response. ATP, UTP, ITP, and to a much lesser extent 2MeSATP increased inositol phosphate production in a dose-dependent manner, suggesting receptor coupling to phosphatidylinositol-specific phospholipase C. These data are consistent with the view that PC12 cells express a class of non-P2Y nucleotide receptors (P2N) that mediate calcium influx and the accumulation of inositol phosphates. © 1993 Wiley-Liss, Inc.  相似文献   

18.
The release of [3H]GABA from superfused slices of rat cerebral cortex was investigated in the presence and absence of the GABA-transaminase inhibitor aminooxyacetic acid (AOAA). In the latter case, an ion-exchange column chromatographic technique was used to separate [3H]GABA from tritiated metabolites released with it into the superfusate. In the absence of AOAA, omission of Ca2+ from the superfusion medium reduced the release of [3H]GABA evoked by a 30 mM K+ pulse by 81.6%, whereas in comparable experiments carried out in the presence of AOAA omission of Ca2+ reduced the K+-evoked release by only 23.5%. Similar results were obtained when a 50 mM K+ pulse was used, where-upon omission of Ca2+ reduced [3H]GABA release by 78.7% in the absence of AOAA as compared with a reduction of only 47.9% when AOAA was present. It is concluded that the presence of AOAA decreases the Ca2+-dependence of K+-evoked [3H]GABA release in this system.  相似文献   

19.
Summary In rat pancreatic islets, a rise in extracellular D-glucose concentration is known to cause a greater increase in the oxidation of D-[6-14C]glucose than utilization of D-[5-3H]glucose. In the present study, such a preferential stimulation of acetyl residue oxidation relative to glycolytic flux was mimicked by nutrient secretagogues such as 2-aminobicyclo[2,2,1]heptane-2-carboxylate, 3-phenylpyruvate, L-leucine, 2-ketoisocaproate, D-fructose and ketone bodies. The preferential stimulation of D-[6-14C]glucose oxidation by these nutrients was observed at all hexose concentrations (0.5, 6.0 and 16.7 mM), coincided with an unaltered rate of D-[3,4-14C]glucose oxidation, was impaired in the absence of extracellular Ca2+, and failed to be affected by NH4 +. Although the ratio between D-[6-14C]glucose oxidation and, D-[5-3H]glucose utilization in islets exposed to other nutrient secretagogues could be affected by factors such as isotopic dilution and mitochondrial redox state, the present data afford strong support to the view that the preferential stimulation of oxidative events in the Krebs cycle of nutrient-stimulated islets is linked to the activation of key mitochondrial dehydrogenases, e.g. 2-ketoglutarate dehydrogenase. The latter activation might result from the mitochondrial accumulation of Ca2+, as attributable not solely to stimulation of Ca2+ inflow into the islet cells but also to an increase in ATP availability.  相似文献   

20.
Phosphoinositol kinase (adenosine triphosphate-inositolmonophosphate phospho—tranferase) has been isolated from cotyledons; about 300-fold purification has been achieved, with a recovery of 11%. The enzyme has a pH optimum at 7·4. It can mediate phosphorylation of lower inositol phosphates to their corresponding higher homologues, ATP being the phosphate donor. ATP can be replaced partially by UTP and PEP. The enzyme requires divalent cations for the reaction. Mn2+ has been found to be twice as effective as Mg2+, Ca2+ being inhibitory. Phosphoinositol kinase has been found to be different from inositol kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号