首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N. Takasaki  T. Yamaki  M. Hamada  L. Park    N. Okada 《Genetics》1997,146(1):369-380
The genomes of chum salmon and pink salmon contain a family of short interspersed repetitive elements (SINEs), designated the salmon SmaI family. It is restricted to these two species, a distribution that suggests that this SINE family might have been generated in their common ancestor. When insertions of the SmaI SINEs at 10 orthologous loci of these species were analyzed, however, it was found that there were no shared insertion sites between chum and pink salmon. Furthermore, at six loci where SmaI SINEs have been species-specifically inserted in chum salmon, insertions of SINEs were polymorphic among populations of chum salmon. By contrast, at four loci where SmaI SINEs had been species-specifically inserted in pink salmon, the SINEs were fixed among all populations of pink salmon. The interspecific and intraspecific variation of the SmaI SINEs cannot be explained by the assumption that the SmaI family was amplified in a common ancestor of these two species. To interpret these observations, we propose several possible models, including introgression and the horizontal transfer of SINEs from pink salmon to chum salmon during evolution.  相似文献   

2.
The 1985 introduction into the European North of Russia resulted in the formation of a large stock of pink salmon of the odd-year breeding line. To assess the divergence of the new population and the role of various microevolutionary factors, variation of four microsatellite loci and fifteen genes encoding proteins (allozymes) in samples of fish, running for spawning in rivers of the new area, and in samples from the donor population of the Ola River (Magadan oblast). In the generations 8 and 9 of the introduced pink salmon of the odd-year line, the genetic diversity (the number of alleles and the mean heterozygosity) both at allozyme and at microsatellite loci was significantly lower, than that in the donor population. The explanations of the decline in diversity are discussed. The first evidence for spatial genetic divergence in transplanted fish within the new area has been obtained; the divergence level may be comparable with that characteristic of native populations.  相似文献   

3.
The 1985 introduction into the European North of Russia resulted in the formation of a large stock of pink salmon of the odd-year broodline. To assess the divergence of the new population and the role of various microevolutionary factors, variation of four microsatellite loci and fifteen genes encoding proteins (allozymes) in samples of fish, running for spawning in rivers of the new area, and in samples from the donor population of the Ola River (Magadan region). In the generations 8 and 9 of the introduced pink salmon of the odd-year line, the genetic diversity (the number of alleles and the mean heterozygosity) both at allozyme and at microsatellite loci was significantly lower, than that in the donor population. The explanations of the decline in diversity are discussed. The first evidence for spatial genetic divergence in transplanted fish within the new area has been obtained; the divergence level may be comparable with that characteristic of native populations.  相似文献   

4.
Species in the genus Oncorhynchus express complicated isocitrate dehydrogenase (IDHP) isozyme patterns in many tissues. Subcellular localization experiments show that the electrophoretically distinct isozymes of low anodal mobility expressed predominantly in skeletal and heart muscle are mitochondrial forms (mIDHP), while the more anodal, complex isolocus isozyme system predominant in liver and eye is cytosolic (sIDHP). The two loci encoding sIDHP isozymes are considered isoloci because the most common allele at one of these loci cannot be separated electrophoretically from the most common allele of the other. Over 12 electrophoretically detectable alleles are segregating at the two sIDHP* loci in chinook salmon. Careful electrophoretic comparisons of the sIDHP isozyme patterns of muscle, eye, and liver extracts of heterozygotes reveal marked differences between the tissues with regard to both relative isozyme staining and the expression of several common alleles. Presumed single-dose heterozygotes at the sIDHP isolocus isozyme system exhibit approximate 9:6:1 ratios of staining intensity in liver and eye, while they exhibit approximate 1:2:1 ratios in skeletal muscle. The former proportions are consistent with the equal expression of two loci (isolocus expression), while the latter are consistent with the expression of a single locus. Screening of over 10,000 fish from spawning populations and mixed-stock fishery samples revealed that certain variant alleles (*127, *50) are detectable only in liver and eye, while other alleles (*129, *94, and *74) are strongly expressed in muscle, eye, and liver. The simplest explanation for these observations is that the "isolocus" sIDHP system of chinook salmon (and that of steelhead and rainbow trout) results from the expression of two distinct loci (sIDHP-1* and sIDHP-2*) that have the same common allele (as defined by electrophoretic mobility). IDHP expression in skeletal muscle is due to the nearly exclusive expression of the sIDHP-1* locus, while IDHP expression in eye and liver tissues is due to high levels of expression of both sIDHP-1* and sIDHP-2*--giving rise to the isolocus situation in these latter tissues. Direct inheritance studies confirm this model of two genetically independent (disomic) loci encoding sIDHP in chinook salmon. Extensive geographic surveys of chinook salmon populations from California to British Columbia reveal marked differences in allele frequencies at both sIDHP-1* and sIDHP-2* and considerably more interpopulation differentiation than was recognized previously when sIDHP was treated as an isolocus system with only five recognized alleles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Electrophoretic variation in isozymes coded by 40 loci was examined in two self-pollinating populations, one with white and the other with pink flowering plants, and four outcrossing populations ofClarkia xantiana (Onagraceae) native to California. The study was carried out to test theMoore & Lewis (1965) hypothesis that the pink selfer originated from the sympatric outcrossing population and then gave rise to the white selfer. The hypothesis could be rejected if one or the other selfer was more similar genetically to an allopatric population than to the sympatric one. Both selfers were monomorphic at all loci whereas the outcrossing populations were polymorphic at nearly half of them. The two selfers had the same genes at 32 loci but had different ones at eight loci. The pink selfer was not more similar to the allopatric populations than to the sympatric one, consistent with theMoore & Lewis model. The evidence also supported their proposal that the white selfer originated from the pink one and not independently. The electrophoretic evidence was valuable because it permitted qualitative comparisons (presence versus absence of particular alleles) between the selfer and the several outcrossing populations; such analysis was not previously possible because the latter populations are morphologically and cytologically similar.  相似文献   

6.
Electrophoretic variation of Atlantic salmon NADP-isocitrate dehydrogenase in liver extracts of material from Ireland is interpreted in terms of two loci, IDH-A and IDH-B , coding for cytoplasmically-located isozymes. The IDH-A locus is polymorphic with qIDH-A 1=0.18 and qIDH-A 2=0.82. This polymorphism is of potential value for investigating the population genetics of the two races of Atlantic salmon in Ireland. An additional, monomorphic band which appears in heart extracts may be a mitochondrial enzyme coded by a third locus.  相似文献   

7.
Atlantic salmon (n = 1682) from 27 anadromous river populations and two nonanadromous strains ranging from south-central Maine, USA to northern Spain were genotyped at 12 microsatellite DNA loci. This suite of moderate to highly polymorphic loci revealed 266 alleles (5-37/locus) range-wide. Statistically significant allelic and genotypic heterogeneity was observed across loci between all but one pairwise comparison. Significant isolation by distance was found within and between North American and European populations, indicating reduced gene flow at all geographical scales examined. North American Atlantic salmon populations had fewer alleles, fewer unique alleles (though at a higher frequency) and a shallower phylogenetic structure than European Atlantic salmon populations. We believe these characteristics result from the differing glacial histories of the two continents, as the North American range of Atlantic salmon was glaciated more recently and more uniformly than the European range. Genotypic assignment tests based on maximum-likelihood provided 100% correct classification to continent of origin and averaged nearly 83% correct classification to province of origin across continents. This multilocus method, which may be enhanced with additional polymorphic loci, provides fishery managers the highest degree of correct assignment to management unit of any technique currently available.  相似文献   

8.
Gene-centromere mapping of 312 loci in pink salmon by half-tetrad analysis.   总被引:8,自引:0,他引:8  
We estimated recombination rates between 312 loci and their centromeres in gynogenetic diploid pink salmon (Oncorhynchus gorbuscha) that we produced by initiating development with irradiated sperm and blocking the maternal second meiotic division. Amplified fragment length polymorphisms (AFLPs) were significantly more centromeric than loci identified by three other techniques (allozymes, microsatellites, and PCR using primer sequences from interspersed nuclear elements). The near absence of AFLPs in distal regions could limit their utility in constructing linkage maps. A large proportion of loci had frequency of second division segregation (y) values approaching 1.0, indicating near complete crossover interference on many chromosome arms. As predicted from models of chromosomal evolution in salmonids based upon results with allozyme loci, all duplicated microsatellite loci that shared alleles (isoloci) had y values of nearly 1.0.  相似文献   

9.
The results of breeding experiments with the pink salmon, Oncorhynchus gorbuscha, indicate that s-MDH-A and s-MDH-B subunits are each encoded by duplicate loci. Limited evidence suggests also that the two loci encoding for the s-MDH-A subunit are each polymorphic and linked or pseudolinked.  相似文献   

10.
The contents of trace elements, viz., Hg, As, Pb, Cd, Zn, and Cu, in a common species of Pacific salmon, viz., the pink salmon, which were caught in early July 2012 and 2013 in the vicinity of Kuril Islands, were examined. It was found that the contents of toxic elements, Cd, Pb, As, and Hg, in the salmon meet human-health consumption guidelines for seafood by the sanitary standards and regulations of the Russian Federation. The contents of all of the metals (except zinc) in pink salmon from the geochemically extreme Kuril area were higher than that in pink salmon from the Sea of Japan. The greatest difference was recorded for lead, whose concentrations in organs and tissues (liver, gonads, and muscle) of fish from Kuril oceanic waters was one and a half order of magnitude higher than that of pink salmon from the Sea of Japan.  相似文献   

11.
In common carp, a freshwater fish species of tetraploid origin, GPI enzymes are present in two variants: GPI-A and GPI-B. GPI-A is coded by two loci segregating for two (GPI-A 1*) and six (GPI-A2*) alleles. Experimental crosses of the ornamental (Koi) variety of common carp revealed that GPI-B is coded by only one locus (GPI-B*). Another GPI-B* locus must have been silenced in the process of functional diploidization. It was also shown that the GPI-A2* locus segregated independently from the GPI-B* locus, demonstrating that the loci are located on different chromosomes.  相似文献   

12.
We constructed genetic linkage maps of allozyme loci in even- and odd-year pink salmon (Oncorhynchus gorbuscha), using the total of 320 families (each female was crossed with two different males, and 80 females and 160 males were used for each of even year and odd year). The maps include eight linkage groups involving 22 loci. We observed substantial variation in recombination frequencies among different families within broodline and between sexes within broodlines. In the linkage analysis between sAAT-3* and sMDH-B1,2*, two even-year families and one odd-year family exhibited evidence of association, but two even-year and one odd-year families did not. Recombination rate tends to be reduced in males in pink salmon. The ratio of recombination rate (female/male), which ranged from 1.7 to infinity, averaged 2.8 in the even-year crosses and 3.2 in the odd-year crosses. The linkage groups (LG) I and II involving sAAT and mAH loci, which probably duplicated in the recent tetraploidization event, and the orders of loci in the LGs I (sAAT-3* --> mAH-4*) and II (mAH-3* --> sAAT-4*) were reversed, suggesting the possible paracentric inversion during salmonid evolution after the duplication.  相似文献   

13.
Pink salmon, Oncorhynchus gorbuscha, are the most abundant wild salmon species and are thought of as an indicator of ecosystem health. The salmon louse, Lepeophtheirus salmonis, is endemic to pink salmon habitat but these ectoparasites have been implicated in reducing local pink salmon populations in the Broughton Archipelago, British Columbia. This allegation arose largely because juvenile pink salmon migrate past commercial open net salmon farms, which are known to incubate the salmon louse. Juvenile pink salmon are thought to be especially sensitive to this ectoparasite because they enter the sea at such a small size (approx. 0.2 g). Here, we describe how 'no effect' thresholds for salmon louse sublethal impacts on juvenile pink salmon were determined using physiological principles. These data were accepted by environmental managers and are being used to minimize the impact of salmon aquaculture on wild pink salmon populations.  相似文献   

14.
Inheritance of nuclear DNA markers in gynogenetic haploid pink salmon   总被引:3,自引:0,他引:3  
We describe the inheritance of 460 PCR-based loci in the polyploid-derived pink salmon (Oncorhynchus gorbuscha) genome using gynogenetic haploid embryos. We detected a length polymorphism in a growth hormone gene (GH-2) intron that is caused by an 81 bp insertion homologous to the 3' end of the salmonid short interspersed repetitive element (SINE) SmaI. Such insertion polymorphisms within species bring into question the use of SINEs as phylogenetic markers. We confirmed that a microsatellite locus encodes a PCR-null allele that is responsible for an apparent deficit of heterozygotes in a population sample from Prince William Sound. Another set of microsatellite primers amplified alleles of the same molecular weight from both loci of a duplicated pair. In our analysis of several PCR-based multilocus techniques, we failed to detect evidence of comigrating fragments produced by duplicated loci. Segregation analysis of PCR-based markers using gynogenetic haploid embryos ensures that the interpretation of molecular variation is not complicated by heterozygosity, diploidy, or gene duplication. We urge investigators to test the inheritance of polymorphisms in salmonids prior to using them to measure genetic variation.  相似文献   

15.
Kim S  Bang H  Yoo KS  Pike L 《Molecules and cells》2007,23(2):192-197
Bulb color in onions (Allium cepa) is an important trait whose complex inheritance mechanism involves epistatic interactions among major color-related loci. Recent studies revealed that inactivation of dihydroflavonol 4-reductase (DFR) in the anthocyanin synthesis pathway was responsible for the color differences between yellow and red onions, and two recessive alleles of the anthocyanidin synthase (ANS) gene were responsible for a pink bulb color. Based on mutations in the recessive alleles of these two genes, PCR-based markers for allelic selection were developed. In this study, genotype analysis of onions from segregating populations was carried out using these PCR-based markers. Segregating populations were derived from the cross between yellow and red onions. Five yellow and thirteen pink bulbs from one segregating breeding line were genotyped for the two genes. Four pink bulbs were heterozygous for the DFR gene, which explains the continuous segregation of yellow and pink colors in this line. Most pink onions were homozygous recessive for the ANS gene, except for two heterozygotes. This finding indicated that the homozygous recessive ANS gene was primarily responsible for the pink color in this line. The two pink onions, heterozygous for the ANS gene, were also heterozygous for the DFR gene, which indicated that the pink color was produced by incomplete dominance of a red color gene over that of yellow. One pink line and six other segregating breeding lines were also analyzed. The genotyping results matched perfectly with phenotypic color segregation.  相似文献   

16.
Aspinwall N 《Genetics》1973,73(4):639-643
Genetic crosses of alpha-glycerophosphate dehydrogenase (alpha-GPDH) phenotypes in the pink salmon, Oncorhynchus gorbuscha (Walbaum), reveal that this enzyme is encoded by a single locus with two codominant alleles (Slow and Fast). The significance of single gene control of alpha-GPDH is discussed in relation to the purported tetraploid nature of the salmonids.  相似文献   

17.
Only males (fully mature and failing to mature) and intersexes have been found among triploids of pink salmon. Possible mechanisms of genetic sex determination in pink salmon are discussed. The possibility of using triploids to regulate sizes of artificial pink salmon populations is also discussed. Triploids of pink salmon are deemed inefficient to use in aquaculture. Delayed maturation is observed in some diploid females reared in farming cages.  相似文献   

18.
Genetic variation at 19 allozyme (including 11 polymorphic) and 10 microsatellite loci was examined in the population samples of odd- and even-broodline pink salmon from the southern part of Sakhalin Island, Southern Kuril Islands, and the northern coast of the Sea of Okhotsk. The estimates of relative interpopulation component of genetic variation over the allozyme loci, per broodline, were on average 0.43% (GST), while over the microsatellite loci it was 0.26% (the theta(ST) coefficient, F-statistics based on the allele frequency variance), and 0.90% (the rho(ST) coefficient, R-statistics based on the allele size variance). The values of interlinear component constituted 2.34, 0.31, and 1.05% of the total variation, respectively. Using the allozyme loci, statistically significant intralinear heterogeneity was demonstrated among the regions, as well as among the populations of Southern Sakhalin Island. Multivariate scaling based on the allozyme data demonstrated regional clustering of the sample groups, representing certain populations during the spawning run or in different years. Most of the microsatellite loci examined were found to be highly polymorphic (mean heterozygosity > 0.880). The estimates of interlinear, interregional, and interpopulation variation over these loci in terms of theta(ST) values were substantially lower than in terms of rho(ST) values. Regional genetic differentiation, mostly expressed at the allozyme loci among the populations from the northern and southern parts of the Sea of Okhotsk (i.e., between the Sakhalin and Kuril populations), was less expressed at the microsatellite loci. The differentiation between these regions observed can be considered as the evidence in favor of a large-scale isolation by distance characterizing Asian pink salmon. It is suggested that in pink salmon, low genetic differentiation at neutral microsatellite loci can be explained by extremely high heterozygosity,of the loci themselves, as well as by the migration gene exchange among the populations (the estimate of the genetic migration coefficient inferred from the "private" allele data constituted 2.6 to 3.4%), specifically, by the ancient migration exchange, which occurred during postglacial colonization and colonization of the range.  相似文献   

19.
The genetic diversity of the resident and migratory forms of sockeye salmon is investigated in 14 populations from various water bodies of Kamchatka and the Commander Islands by ten loci of microsatellite DNA. There are considerable differences in the frequencies of alleles among the populations of kokanee from Lake Kronotskoe, the residual form of sockeye salmon from Lake Kopylie, and other populations analyzed. Clustering of samples corresponds to their geographic position. No differences in the frequencies of alleles of the investigated loci are found between two forms of resident sockeye salmon from Kronotskoe Lake. In the sockeye salmon from the Commander Islands, a relatively low genetic diversity is found, as well as the greatest remoteness from the other Kamchatka group.  相似文献   

20.
Studying the effect of similar environments on diverse genetic backgrounds has long been a goal of evolutionary biologists with studies typically relying on experimental approaches. Pink salmon, a highly abundant and widely ranging salmonid, provide a naturally occurring opportunity to study the effects of similar environments on divergent genetic backgrounds due to a strict two‐year semelparous life history. The species is composed of two reproductively isolated lineages with overlapping ranges that share the same spawning and rearing environments in alternate years. We used restriction‐site‐associated DNA (RAD) sequencing to discover and genotype approximately 8000 SNP loci in three population pairs of even‐ and odd‐year pink salmon along a latitudinal gradient in North America. We found greater differentiation within the odd‐year than within the even‐year lineage and greater differentiation in the southern pair from Puget Sound than in the northern Alaskan population pairs. We identified 15 SNPs reflecting signatures of parallel selection using both a differentiation‐based method (BAYESCAN) and an environmental correlation method (BAYENV). These SNPs represent genomic regions that may be particularly informative in understanding adaptive evolution in pink salmon and exploring how differing genetic backgrounds within a species respond to selection from the same natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号