首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most derived fruit-eating bats have small canines, wide palates and molars with a distinctive labial rim. Paracone and metacone have moved from a dilambdodont position in the middle of the tooth to the labial side of the tooth where they form the labial cutting edge. Along with the well-developed and close fitting labial cutting edges of the premolars and canines, this cutting edge skirts nearly the entire perimeter of the palate. The labial rim of the lower teeth fit inside the labial rim of the upper teeth like two cookie cutters nesting one inside the other. Frugivores have a greater allocation of tooth area at the anterior end of the toothrow, while animalivorous species have more at the posterior end of the toothrow. The area occupied by canines of predators of struggling prey is greater than that for bats that eat non-struggling prey like fruit. In addition, frugivores have wider palates than long while many carnivores have longer palates than wide. Omnivores appear to have a more equal allocation of space to more kinds of teeth, particularly the incisors and non-molariform premolars, on the toothrow than do frugivores or animalivores. The mechanical nature of different food items is discussed and the suggestion made that describing foods in terms of their texture may be more important in tooth design than whether they are fruit or insect or vertebrate.  相似文献   

2.
Large animalivorous bats include carnivorous, piscivorous and insectivorous microchiropterans. Skull proportions and tooth morphology are examined and interpreted functionally. Four wide- faced bats from four families are convergent in having wide skulls, large masseter muscle volumes and stout jaws, indicating a powerful bite. Three of the four also have long canine teeth relative to their maxillary toothrows. Carnivorous bats have more elongate skulls, larger brain volumes and larger pinnae. The wide-faced bats are all dral emitters and have heads positively tilted relative to the basicranial axis. The carnivorous species are nasal-emitting bats and have negatively tilted heads. The orientation of the head relative to the basicranial axis affects several characters of the skull and jaws and is not correlated with size. The speculation that the type of echolocation may be more of a determinant of evolutionary change than the feeding mechanism is addressed. Wide-faced bats are thought to be capable of eating hard prey items (durophagus) and are probably non- discriminating, aurally less sophisticated insect generalists while the carnivorous and non- durophagus insectivorous bats may be more discriminating and aurally more sophisticated in what they eat.  相似文献   

3.
Anthropoid primates are well known for their highly sexually dimorphic canine teeth, with males possessing canines that are up to 400% taller than those of females. Primate canine dimorphism has been extensively documented, with a consensus that large male primate canines serve as weapons for intrasexual competition, and some evidence that large female canines in some species may likewise function as weapons. However, apart from speculation that very tall male canines may be relatively weak and that seed predators have strong canines, the functional significance of primate canine shape has not been explored. Because carnivore canine shape and size are associated with killing style, this group provides a useful comparative baseline for primates. We evaluate primate maxillary canine tooth size, shape and relative bending strength against body size, skull size, and behavioral and demographic measures of male competition and sexual selection, and compare them to those of carnivores. We demonstrate that, relative to skull length and body mass, primate male canines are on average as large as or larger than those of similar sized carnivores. The range of primate female canine sizes embraces that of carnivores. Male and female primate canines are generally as strong as or stronger than those of carnivores. Although we find that seed-eating primates have relatively strong canines, we find no clear relationship between male primate canine strength and demographic or behavioral estimates of male competition or sexual selection, in spite of a strong relationship between these measures and canine crown height. This suggests either that most primate canines are selected to be very strong regardless of variation in behavior, or that primate canine shape is inherently strong enough to accommodate changes in crown height without compromising canine function.  相似文献   

4.
Data are presented which suggest that the size of fish myxosporidan spores is primarily determined by the parasite's development in the tissues or organ's cavities and the spore's shape is determined by the presence of physiologically and behaviorally suitable fish.  相似文献   

5.
BACKGROUND AND AIMS: Morphological diversity of leaves is usually quantified with geometrical characters, while in many cases a simple set of biophysical parameters are involved in constraining size and shape. One of the main physiological functions of the leaf is transpiration and thus one can expect that leaf hydraulic parameters can be used to predict potential morphologies, although with the caveat that morphology in turn influences physiological parameters including light interception and boundary layer thickness and thereby heat transfer and net photosynthesis. METHODS: An iterative model was used to determine the relative sizes and shapes that are functionally possible for single-veined leaves as defined by their ability to supply the entire leaf lamina with sufficient water to prevent stomatal closure. The model variables include the hydraulic resistances associated with vein axial and radial transport, as well as with water movement through the mesophyll and the leaf surface. KEY RESULTS: The four parameters included in the model are sufficient to define a hydraulic functional design space that includes all single-veined leaf shapes found in nature, including scale-, awl- and needle-like morphologies. This exercise demonstrates that hydraulic parameters have dissimilar effects: surface resistance primarily affects leaf size, while radial and mesophyll resistances primarily affect leaf shape. CONCLUSIONS: These distinctions between hydraulic parameters, as well as the differential accessibility of different morphologies, might relate to the convergent evolutionary patterns seen in a variety of fossil lineages concerning overall morphology and anatomical detail that frequently have evolved in linear and simple multi-veined leaves.  相似文献   

6.
The South American hystricognath rodents are one of the most diverse mammalian clades considering their occupied habitats, locomotor modes and body sizes. This might have been partly evolved by diversification of their masticatory apparatus' structure and its ecological commitment, for example, chisel‐tooth digging. In this phylogeny‐based comparative study, we test the relationship between ecological behavior and mechanical features of their incisors and molariforms. In 33 species of nine families of caviomorph rodents, we analyze incisor attributes related to structural stress resistance and molar features related with grinding capacity, for example, second moment of inertia and enamel index (EI) (enamel band length/occlusal surface area), respectively. Most of these variables scaled isometrically to body mass, with a strong phylogenetic effect. A principal component analysis discrimination on the EI clustered the species according to their geographic distribution. We presume that selective pressures in Andean–Patagonian regions, on particular feeding habits and chisel‐tooth digging behaviors, have modeled the morphological characteristics of the teeth. Subterranean/burrower ctenomyids, coruros, and plains viscachas showed the highest bending/torsion strength and anchorage values for incisors; a simplified enamel pattern in molariforms would be associated with a better grinding of the more abrasive vegetation present in more open and drier biomes. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Mosimann and colleagues formulated a technique that distinguishes between size and shape, based on the concept of geometric similarity and the distinction between log size-and-shape and log shape variables. We extend these formulations in an examination of the forelimb of three callitrichid species (adultSaguinus oedipus, Saguinus fuscicollis, andCallithrix jacchus). We employ principal components analysis to explore the relationship between variance explained by size-and-shape versus shape alone. Independence of shape vectors is examined via correlation analysis. Then we use log shape data to construct intersample (species means) and total sample (between all paris of individuals) matrices of average taxonomic distances. These distance matrices are subjected to cluster analysis and principal coordinate ordinations. Results of principal components analysis suggest that after isometric size is removed, there remains sufficient shape information to discriminate among the three taxa. Careful examination and quantification of the relationships between shape and size suggest that size information (e.g., geometric mean) is fundamental for understanding shape differences within and among callitrichid species; in other words, most aspects of forelimb shape are significantly correlated with size. Contrary to conventional wisdom, we also demonstrate that such correlations are not spurious. Ordinations and clustering of log shape distance matrices (based on means and individuals) support the notion that, despite differences in size, the two tamarins are more similar in shape than either is toC. jacchus (despite size similarity betweenS. fuscicollis andC. jacchus). Although shape variation in the forelimb of calliirichids may have a functional component, the phylogenetic signal remains strong and serves to group individuals accordingly.  相似文献   

8.
In this work the analogies and differences in shape and size between a rural school population (6–14 aged) of the Lozoya-Somosierra region (Madrid) and several recent and past Spanish populations from different environments have been studied. The results show the growth trend as well as the influences of ecological and socioeconomical factors. Paper presented at the 4th congress of the European Anthropology Association (Florence, Sept. 1984).  相似文献   

9.
Puncturing ability of idealized canine teeth: edged and non-edged shanks   总被引:1,自引:0,他引:1  
Idealized edged and non-edged indenters, mimicking canine teeth, were used to puncture thin materials and thick materials. Less force was needed for the edged (triangular in cross section) indenter to penetrate thin Mylar, paper, leather, beetle elytra and turkey skin than the non-edged (circular in cross-section) indenter. Oak, grass and magnolia leaves responded equally to both indenters. In thick materials, the edged indenter punctured beetles, shrimp, bananas, and chicken flesh more easily than the non-edged indenter. Apple, tomato and avocado were punctured equally well. The edged indenter directs cracks at the corners so that the material can fold away in the direction of puncture, whereas cracks form unpredictably with the non-edged indenter. Edged indenters have the advantage in many of the materials tested.  相似文献   

10.
Changes in size, whether ontogenetic or phylogenetic, tend to be associated with changes in shape. This allometry can arise through two different evolutionary mechanisms: (1) selection acting primarily on overall size may be associated with changes in shape because of physiological and mechanical constraints or differential responses of different body components; or (2) selection acting primarily on shape (on the size of specific body components) may be associated with changes in overall size because of genetic correlations, and thus correlated responses, of other body components. To assess the relative importance of these two mechanisms, shape polymorphism is examined along two axes of size dimorphism (sex and wing morphology) in the common waterstrider, Gerris remigis Say. Eight measurements were made of body and appendage components of 234 adults, from three independent populations. Univariate and multivariate analyses reveal that both sexes and wing morphs differ significantly in size and shape. Shape differentiation along the two axes of size dimorphism is found to be dissimilar, partially independent of size, and strongly correlated with the ecological specialization of the various morphs. These observations suggest that selection is acting directly on shape, and thus that allometry in this species primarily reflects shape-mediated changes in size (mechanism 2), rather than size-mediated changes in shape. The role of developmental processes in facilitating this shape differentiation is discussed.  相似文献   

11.
Tao Y  Zhang L 《Biopolymers》2006,83(4):414-423
The chemical structure of a water-soluble polysaccharide, coded as TM3b, extracted from sclerotia of Pleurotus tuber-rigium was analyzed to be a hyperbranched beta-D-glucan with beta-(1-->6), beta-(1-->4), and beta-(1-->3)-linked residues, with degree of branching (DB) of 57.6%. The results from size-exclusion chromatography combined with laser light scattering (SEC-LLS) revealed that the hyperbranched polysaccharide easily aggregated in 0.15 M aqueous NaCl, whereas it dispersed as individual chains in DMSO. The weight-average molecular weight (M(w)), radius of gyration, intrinsic viscosity, and chain density of TM3b in DMSO and in 0.15 M aqueous NaCl were measured with SEC-LLS, LLS, and viscometry. The results indicated that single chains and aggregates with aggregation number of 12 coexisted in the aqueous solution, whereas individual molecules of TM3b occurred in DMSO. In view of the molecular parameters, the aggregates in aqueous solution exhibited more compact chain structure than the individual molecules in DMSO. Furthermore, transmission electron microscopy and atomic force microscopy showed that all of the aggregates and individual molecules exhibited spherical particles in the solutions. This work provided the valuable information of chain conformation and molecular morphology of the hyperbranched polysaccharide in different solvents.  相似文献   

12.
The swimming behaviour of ten species of diving beetles was studied with a video image analysing system, with the aim of testing the interpretation of their size and shape as functional characters reflecting adaptations to different swimming strategies. Velocity, sinuosity of the trajectory, and the relation between the two were studied in an unobstructed aquarium and, for the four largest species, in an aquarium with vertical sticks. Species predicted to be poor swimmers had the lowest average and maximum velocities. A globular species considered to have high manoeuvrability swam in highly sinuous trajectories, and could maintain this sinuosity at a wide range of velocities. One of the larger species, considered to be adapted to high speed swimming, also swam in highly sinuous trajectories, but only at slow velocities; its swimming pattern was considered to be the product of behavioural rather than morphological constraints. For two of the largest species, there was a significant decrease in sinuosity at higher velocities, whilst another was found to have a good compromise between velocity and manoeuvrability. In the aquarium with obstacles all the species reduced their maximum velocity, while the effect on sinuosity varied between species. Although the space limitation of the aquarium and the lack of motivation could have prevented some species from reaching their maximal velocities, a good agreement was found between the predicted and the actual swimming characteristics.  相似文献   

13.
The aim of this study was to evaluate the levels of phylogenetic heritability of the geographical range size, shape and position for 88 species of fiddler crabs of the world, using phylogenetic comparative methods and simulation procedures to evaluate their fit to the neutral model of Brownian motion. The geographical range maps were compiled from literature, and range size was based on the entire length of coastline occupied by each species, and the position of each range was calculated as its latitudinal and longitudinal midpoint. The range shape of each species was based in fractal dimension (box‐counting technique). The evolutionary patterns in the geographical range metrics were explored by phylogenetic correlograms using Moran’s I autocorrelation coefficients, autoregressive method (ARM) and phylogenetic eigenvector regression (PVR). The correlograms were compared with those obtained by simulations of Brownian motion processes across phylogenies. The distribution of geographical range size of fiddler crabs is right‐skewed and weak phylogenetic autocorrelation was observed. On the other hand, there was a strong phylogenetic pattern in the position of the range (mainly along longitudinal axis). Indeed, the ARM and PVR evidenced, respectively, that ca. 86% and 91% of the longitudinal midpoint could be explained by phylogenetic relationships among the species. The strong longitudinal phylogenetic pattern may be due to vicariant allopatric speciation and geographically structured cladogenesis in the group. The traits analysed (geographical range size and position) did not follow a Brownian motion process, thus suggesting that both adaptive ecological and evolutionary processes must be invoked to explain their dynamics, not following a simple neutral inheritance in the fiddler‐crab evolution.  相似文献   

14.
Human erythrocytes were incubated in isotonic solutions of different monovalent cations. The apparent size of the red cells measured on scanning electron microscopic pictures decreases in the order Li+>Na+=K+>Rb+. These differences in size are abolished after pretreatment with trypsin, which removes a large part of the charges associated with membrane glycoproteins. Shape alterations are also observed. Normal biconcave shapes are visible after Na+ or K+ incubation, whereas Li+ leads to flabby, flattened cells with a certain tendency to crenation, and Rb+ causes more pronounced biconcavity with a certain tendency to cupping. The overall effects of pretreatment with trypsin are similar to those of Li+. Our results provide evidence that the electrostatic repulsion of glycoproteins and other charged membrane components may play an essential role in maintaining red cell shape.  相似文献   

15.
16.
中国东部亚热带青冈果实形态变异的研究   总被引:32,自引:0,他引:32  
青冈为我国亚热带地我广泛分布,并具有较强耐寒和耐瘠薄能力的少数几个常绿树种之一,以果实长度,宽度和体积作为果实大小的指标,宽/长作为果实形状的指标,对采自东部亚热带的10个青冈和群果实形态进行了比较分析,结果如下:(1)青冈果实的大小和形状在种群间,种群内均存在着显著差异,变异幅度最大的是果实的体积(种群间的变异幅度CV1为57.1%,种群间平均单粒果实体积的最大差异为3.5倍)其次为宽度(21.  相似文献   

17.
18.
19.
Characterizing patterns of observed current variation, and testing hypotheses concerning the potential drivers of this variation, is fundamental to understanding how morphology evolves. Phylogenetic history, size and ecology are all central components driving the evolution of morphological variation, but only recently have methods become available to tease these aspects apart for particular body structures. Extant monitor lizards (Varanus) have radiated into an incredible range of habitats and display the largest body size range of any terrestrial vertebrate genus. Although their body morphology remains remarkably conservative, they have obvious head shape variation. We use two‐dimensional geometric morphometric techniques to characterize the patterns of dorsal head shape variation in 36 species (375 specimens) of varanid, and test how this variation relates to size, phylogenetic history and ecology as represented by habitat. Interspecific head shape disparity is strongly allometric. Once size effects are removed, principal component analysis shows that most shape variation relates to changes in the snout and head width. Size‐corrected head shape variation has strong phylogenetic signal at a broad level, but habitat use is predictive of shape disparity within phylogenetic lineages. Size often explains shape disparity among organisms; however, the ability to separate size and shape variation using geometric morphometrics has enabled the identification of phylogenetic history and habitat as additional key factors contributing to the evolution of head shape disparity among varanid lizards.  相似文献   

20.
Enamel and dentin patterns have awakened a considerable interest in phylogenetic studies. However, almost nothing is known about the dental tissue proportions of European Pleistocene hominins, apart from Neanderthal populations. This study aims to assess the three-dimensional dental tissue proportions of permanent canines belonging to the extensive sample of hominin teeth at Sierra de Atapuerca (Spain) through the use of microtomographic techniques. Our results show that early and middle Pleistocene populations from Atapuerca exhibit large coronal and root dentine dimensions, as well as a thinly enamelled pattern, which has been traditionally considered an autapomorphic Neanderthal trait. Therefore, these results might support an early enamel thickness decrease which is already observed 800 kyr ago in Homo antecessor and maintained in later groups such as Sima de los Huesos and Neanderthal populations during the middle Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号