共查询到20条相似文献,搜索用时 0 毫秒
1.
In order to study the mechanism for activation of ATP hydrolysis by Mg2+, the stoichiometry of the high affinity calcium-binding sites with respect to each form of reaction intermediate of sarcoplasmic reticulum ATPase was determined at 0 degrees C and pH 7.0 in the presence and absence of added Mg2+ using the purified ATPase preparation. High affinity calcium binding to the enzyme-ATP complex and to ADP-sensitive (E1P) and ADP-insensitive (E2P) phosphoenzymes occurred with stoichiometric ratios of 2, 2, and 0, and 3, 3, and 1 in the presence and absence of added Mg2+, respectively. The results were interpreted to indicate that in addition to 2 mol of calcium bound to the transport sites of the ATPase, 1 mol of divalent cation, which is derived from the metal component of the substrate, the metal-ATP complex, remains bound to each mole of the enzyme at least until E2P is hydrolyzed. As activation of phosphoenzyme hydrolysis by Mg2+ was blocked by the low concentrations of Ca2+ used in the calcium binding experiments, it was concluded that it is the magnesium derived from MgATP that is responsible for rapid hydrolysis of the phosphoenzyme intermediate. 相似文献
2.
Factors influencing calcium release from the ADP-sensitive phosphoenzyme intermediate of the sarcoplasmic reticulum ATPase 总被引:1,自引:0,他引:1
Calcium release from the ADP-sensitive phosphoenzyme intermediate of the sarcoplasmic reticulum ATPase was investigated at 6 degrees C under a variety of conditions using the purified ATPase protein and the rapid membrane filtration system. The rate of calcium release measured in the presence of [ethylene bis-(oxyethylenenitrilo)]tetraacetic acid increased monotonically with increasing pH of the medium, the time at which 50% of the bound calcium was released being reduced to one third when the pH was raised from 5.5 to 9.0. Dimethyl sulfoxide at 10 or 20% (v/v) also was very effective in accelerating the calcium release. ATP at a millimolar concentration range also was stimulatory, but millimolar concentrations of Mg2+ were found to be inhibitory. Using an indirect method, i.e. by measuring the overall rate of calcium transport by the reconstituted vesicles under conditions where calcium release from the ADP-sensitive phosphoenzyme was presumably rate-limiting, the calcium release was shown to be accelerated up to 1.5-fold by the inside-negative potential imposed across the membrane using the K+-valinomycin system. As evidence was presented suggesting that the observed calcium release primarily reflects the phosphoenzyme isomerization which leads to reduction in calcium affinity of the phosphoenzyme, the results strongly suggest that this phosphoenzyme isomerization was affected significantly by each of the factors described above. 相似文献
3.
G Inesi E Maring A J Murphy B H McFarland 《Archives of biochemistry and biophysics》1970,138(1):285-294
4.
《Archives of biochemistry and biophysics》1986,247(2):365-371
Enzyme preparations with variable phospholipid contents were obtained by removing lipids from sarcoplasmic reticulum with deoxycholate. Preparations containing from 90 to 37 phospholipids per enzyme showed normal values of both Ca2+-ATPase activity and steady-state phosphoenzyme levels. Fractions containing 37 to 23 phospholipids per enzyme had a reduced ATPase activity but normal phosphoenzyme levels, showing that in this range of lipid content the ATPase reaction is inhibited in a reaction step subsequent to phosphoenzyme formation but prior to phosphoenzyme decomposition. Delipidation below 23 lipids per enzyme caused a marked reduction of the amount of phosphoenzyme formed, so that although both reactions require lipids, fewer lipids are required for phosphoenzyme formation than for decomposition. The effect of lipid removal could be completely reversed by readdition of lipids to fractions containing more than 11 lipids per enzyme. It is proposed that phosphoenzyme formation requires full occupancy of a boundary domain of 23 lipids per enzyme, and that the selective inhibition of phosphoenzyme decomposition at higher lipid contents is caused by a decrease in the rotational mobility of the enzyme. 相似文献
5.
6.
In order to study the action of the divalent cation which is essential for phosphorylation of sodium- and potassium-transport adenosine triphosphatase, magnesium ion, the normal ligand, was replaced with calcium ion, which had properties diffeerent from those of Mg2+, Mn2+, Fe2+, Co2+, Ni2+, or Zn2+. Phosphorylation of the enzyme from ATP at pH 7.4 in the presence of Na+ and Ca2+ yielded a Ca.phosphoenzyme (60% of the maximal level) with a normal rate of dephosphorylation following a chase with unlabeled Ca.ATP (PK = 0.092S-1 at 0 degrees C). In contrast, after a chase by a chelator, namely ethylenediaminetetraacetic acid, 1,2-cyclohexylenedinitrilotetraacetic acid, or ethylene glycol bis-(beta-aminoethyl ether)N,N'-tetraacetic acid, dephosphorylation slowed within 5 s and half of the initial phosphoenzyme remained with a stability about 5-fold greater than normal. Three states of the phosphoenzyme were distinguished according to their relative sensitivity to ADP or to K+ added during a chase. Normally prepared Mg.phosphoenzyme was sensitive to K+ but not to ADP; Ca.phosphoenzyme was sensitive either to ADP or to K+; and the stabilized phosphoenzyme prepared from Ca.phosphoenzyme by addition of a chelator was sensitive neither to ADP nor to K+ nor to both together. Addition of Ca2+ to the stabilized phosphoenzyme restored the reactivity to that of Ca.phosphoenzyme. Addition of Mg2+ to the stabilized phosphoenzyme changed the reactivity to that of Mg.phosphoenzyme. Therefore, this unreactive, stabilized state of the phosphoenzyme appeared to be a divalent cation-free phosphoenzyme. With respect to sensitivity to ouabain, Ca.phosphoenzyme was as sensitive as Mg.phosphoenzyme but calcium-free phosphoenzyme was much less sensitive. It was concluded that the divalent cation required for phosphorylation normally remains tightly bound to the phosphoenzyme and is required for normal reactivity. Calcium ion was almost unique in dissociating relatively easily from the phosphoenzyme. Strontium ion appeared to act similarly to Ca2+. 相似文献
7.
Inactivation of sarcoplasmic ATPase in the solubilized state was studied in the absence and presence of Ca2+, Mg2+ and glycerol. The effects of the detergents octa(ethyleneglycol) mono-n-dodecyl ether (C12E8), 1-O-tetradecylpropanediol-(1,3)-3-phosphorylcholine and myristoylglycerophosphocholine were compared. All three detergents caused a rapid decline of the dinitrophenyl phosphatase activity of the unprotected enzyme. The stabilizing effect of Ca2+ ions was kinetically analysed. It was found that the stability of the solubilized enzyme depends on the Ca2+ concentration in a manner which is best explained by assuming rapid inactivation of Ca2+-free enzyme accompanied by slow inactivation of a calcium-enzyme complex (E1Ca). The apparent affinity constants obtained are in the order of 10(6)M-1, suggesting that high-affinity Ca2+ binding must be involved. No indications of a contribution were found, either of low-affinity Ca2+-binding sites of the conformational state E2 or of the high-affinity calcium complex E1Ca2. If Ca2+ was replaced by Mg2+, which exerts a weaker protection, the apparent affinity constants for Mg2+ are in the range of 1 mM-1. The stoichiometry of the effect of Mg2+ depends on the detergent. 相似文献
8.
Kinetic effects of calcium and ADP on the phosphorylated intermediate of sarcoplasmic reticulum ATPase 总被引:1,自引:0,他引:1
The decomposition of 32P phosphorylated enzyme intermediate formed by incubation of sarcoplasmic reticulum ATPase with [gamma-32P]ATP was studied following dilution of the reaction medium with a large excess of nonradioactive ATP. The phosphoenzyme decomposition includes two kinetic components. The fraction of intermediate undergoing slower decomposition is minimal in the presence of low (microM) Ca2+ and maximal in the presence of high (mM) Ca2+. A large fraction of phosphoenzyme undergoes slow decomposition when the Ca2+ concentration is high inside the vesicles, even if the Ca2+ concentration in the medium outside the vesicles is low. Parallel measurements of ATPase steady state velocity in the same experimental conditions indicate that the apparent rate constant for the slow component of phosphoenzyme decomposition is inadequate to account for the steady state ATPase velocity observed under the same conditions and cannot be the rate-limiting step in a single, obligatory pathway of the catalytic cycle. On the contrary, the steady state enzyme velocity at various Ca2+ concentrations is accounted for by the simultaneous contribution of both phosphoenzyme fractions undergoing fast and slow decomposition. Contrary to its slow rate of decomposition in the forward direction of the cycle, the phosphoenzyme pool formed in the presence of high Ca2+ reacts rapidly with ADP to form ATP in the reverse direction of the cycle. Detailed analysis of these experimental observations is consistent with a branched pathway following phosphoryl transfer from ATP to the enzyme, whereby the phosphoenzyme undergoes an isomeric transition followed by ADP dissociation, or ADP dissociation followed by the isomeric transition. The former path is much faster and is prevalent when the intravesicular Ca2+ concentration is low. When the intravesicular Ca2+ concentration rises, a pool of phosphoenzyme is formed by reverse equilibration through the alternate path. In the absence of ADP this intermediate decays slowly in the forward direction, and in the presence of ADP it decays rapidly in the reverse direction of the cycle. 相似文献
9.
The mobility of spin labels covalently bound to the Ca2+-transport ATPase (ATP phosphohydrolase [EC 3.y.1.3]) was studied by electron spin-resonance spectroscopy in purified ATPase and reconstituted vesicles. The purified ATPase of sarcoplasmic reticulum of rabbit skeletal muscle was covalently labeled with maleimide spin-labels of different chain length and the phospholipids were exchanged for dipalmitoylphosphatidylcholine. The spectrum of the short-chain maleimide spin-label, bound to purified ATPase indicates reduced mobility after substitution of endogenous phospholipids with dipalmitoylphosphatidylcholine. With the long-chain maleimide derivative no difference was detected in the spectra, measured at 20-35 degrees C temperature before and after substitution with dipalmitoylphosphatidylcholine. Below 10 degrees C temperature the substitution with dipalmitoylphosphatidylcholine decreased the mobility of the prove, indicating that the microviscosity of environment in the vicinity of nitroxide groups was influenced by changes in the fatty acid composition. With both short and long chain spin-labels bound to purified ATPase adn sarcoplasmic reticulum vesicles the amplitude of weakly immobilized component sharply decreased in media containing 20-50% glycerol. Therefore, the mobility of covalently bound nitroxide group in short or long chain maleimide derivatives is also sensitive to the viscosity of the water phase. 相似文献
10.
11.
S Verjovski-Almeida E Kurtenbach A F Amorim G Weber 《The Journal of biological chemistry》1986,261(21):9872-9878
The effect of hydrostatic pressure on the self-association of sarcoplasmic reticulum ATPase solubilized by nonionic detergent was studied in the pressure range of 1 atm up to 2 kilobars. Polarization of intrinsic tryptophan fluorescence or of fluorescence of a pyrene probe covalently attached to the ATPase was measured. An increase in hydrostatic pressure promoted dissociation of the protein into monomers. For a midpoint dissociation pressure of 1.3 kilobars, the standard volume change in the dissociation reaction was delta Vop = -167 ml/mol. Full reversibility of the pressure effects was shown to occur, as seen by recovery of polarization. An increase in Ca2+ concentration from 50 microM to 5 mM and of pH from 6.9 to 8.6 were found to increase the midpoint dissociation pressure, indicating that these factors stabilize the dimeric state. The hydrolytic activity of the ATPase was measured under pressure. The activity was inhibited by pressure increase. It was found that an irreversible inactivation of the solubilized enzyme occurred during turnover and that increasing pressure added to this instability. Reversibility of the activity was critically dependent on the presence of 10 mM Ca2+ in the assay medium. 相似文献
12.
13.
The inhibition of Ca2+-dependent ATPase from SR [EC 3.6.1.3] by ADP was of mixed type under both low Ca2+ and high Mg2+ concentration and high Ca2+ and low Mg2+ concentrations. On the other hand, the inhibition of Na+, K+-dependent ATPase [EC 3.6.1.3] by ADP was of competitive type in the presence of low and high K+ concentrations. These results suggest that ADP is released before Pi from the phosphoenzyme with bound ADP (EPADP) in the case of Ca2+-ATPase, but that Pi is released before ADP in the case of Na+, K+-ATPase. 相似文献
14.
The monomer-dimer association constant of solubilized and delipidated sarcoplasmic reticulum ATPase was measured by large zone elution gel chromatography in the presence of a high concentration (18.6 mM) of the nonionic detergent dodecyloctaethylene glycol monoether (C12E8) and of different ATPase protein concentrations in the range of 0.74 (6.4 nM monomers) to 30 (0.26 microM monomers) microgram/ml. The association equilibrium constant (Ka) obtained from the concentration-dependent dissociation curve was 9.37 X 10(7) M-1 at 24 degrees C. The derived free energy change (delta G0) for the monomer-dimer association was -10.8 kcal/mo, reflecting a high degree of tightness between inter-subunit domains in soluble dimeric ATPase. A steep dissociation curve within a short natural logarithmic span (2.5 units) was obtained when the degree of dissociation increased from 0.1 to 0.9, suggesting that a conformational drift accompanies the dissociation of soluble dimeric ATPase. A unique leading boundary was formed in the large zone chromatographies, indicating a reversible equilibrium which was rapid when compared to the time taken for the chromatographic run. Enzymatic activity was continuously monitored in the eluate, revealing that soluble ATPase at different degrees of dissociation was active. 相似文献
15.
Y Dupont 《European journal of biochemistry》1977,72(1):185-190
The measurement of ATP binding to the sarcoplasmic reticulum membrane reveals that the calcium pump possesses one high affinity (Kd = 2--3 muM) site. Competition with substrate analogs show the high specifity of that site. At high ATP concentration another class of site can be detected with a much higher dissociation constant (Kd approximately 500 muM). This class of sites is of low specificity and ATP is easily displaced by other polyphosphates. The steady state rate of ATP cleavage is measured in the presence of ATP analogs. It is shown that the catalysis is due to the high affinity site. The activation of the hydrolysis rate at high substrate concentration may be related to the effect of binding of ATP to the weak sites. The effect of ATP analogs for various ATP concentration supports this hypothesis. 相似文献
16.
G Bailin 《Biochimica et biophysica acta》1980,623(1):213-224
The ATPase (ATP phosphohydrolase (EC 3.6.1.3)) protein of rabbit skeletal sarcoplasmic reticulum rapidly incorporated three mol of 1-fluoro-2,4-dinitrobenzene per 10(5) g of protein with little change in the Ca2+-dependent ATPase activity. When 2 additional mol of the reagent were bound the Ca2+-dependent ATPase activity was inhibited. The dinitrophenyl group was located mainly in the ATPase protein and a small amount of the label was found in the proteolipid component of the ATPase preparation as judged by dissociation experiments in sodium dodecyl sulfate. Cysteine and tyrosine residues were dinitrophenylated in the modified ATPase protein. Thiolysis of the dinitrophenylated ATPase protein with 2-mercaptoethanol under various conditions did not restore the Ca2+-dependent ATPase activity. Solubilization of the ATPase protein with sodium deoxycholate increased the reactivity of the reagent and the Ca2+-dependent ATPase activity was inhibited to a greater extent. Dinitrophenylation of the ATPase protein was Ca2+-dependent; in the presence of high Ca2+ the incorporation increased by 50% and a large decrease in the Ca2+-ATPase activity was noted. The half-maximal changes for the incorporation of the reagent and the inhibition of the Ca2+-ATPase activity occurred at 3--4 microgram Ca2+-concentration, consistent with the binding of Ca2+ to high affinity sites on the ATPase protein. These results indicate that the ATPase protein as a Ca2+-free and a Ca2+-bound conformation. The reagent, 1-fluoro-2,4-dinitrobenzene reacts differentially and thus characterizes these two conformations. 相似文献
17.
A J Murphy 《Biochemical and biophysical research communications》1976,70(1):160-166
Treatment of rabbit sarcoplasmic reticulum vesicles with the cross-linking agent, cupric phenanthroline, causes production of high-molecular weight bands on SDS-gel electrophoresis. A plot of log mol wt mobility indicates that the main band produced from the ATPase (mol wt = 105) has a mol wt of 4 × 105 and thus suggests formation of a tetramer. Notably, bands corresponding to dimers, trimers, pentamers, etc., are absent. The bands attributable to calsequestrin and calcium binding protein are unchanged by cupric phenanthroline. With extended treatment, the tetramer itself is polymerized (mol wt>106). Partial disruption of the membranes with deoxycholate or Triton X-100 before cross-linking favors tetramer formation; the presence of sodium dodecyl sulfate, on the other hand, prevents intermolecular cross-linking. Our results suggest that the ATPase is at least partially associated within the membrane as a tetramer. 相似文献
18.
The "total" ATPase activity of rabbit sarcoplasmic reticulum (SR) vesicles includes a Ca2+-independent component ("basic") and Ca2+-dependent component ("extra"). Only the "extra" ATPase is coupled to Ca2+ transport. These activities can be measured under conditions in which the observed rates approximate maximal velocities. The "basic" ATPase is predominant in one of the various SR fractions obtained by prolonged density-gradient centrifugation of SR preparations already purified by repeated differential centrifugations and extractions at high ionic strength. This fraction (low dnesity, high cholesterol) has a protein composition nearly identical with that of other SR fractions in which the "extra" ATPase is predominant. In these other fractions the ratio of "extra" to "basic" ATPase activities is temperature dependent, being approximately 9.0 at 40 degrees C and 0.5 at 4 degrees C. In all the fractions and at all temperatures studied, similar steady-state levels of phosphorylated SR protein are obtained in the presence of ATP and Ca2+. Furthermore, in all cases the "basic" (Ca2+-independent) ATPase acquires total Ca2+ dependence upon addition of the nonionic detergent Triton X-100. This detergent also transforms the complex substrate dependence of the SRATPase into a simple dependence, displaying a single value for the apparent Km. The experimental findings indicate that the ATPase of rabbit SR exists in two distinct functional states (E1 and E2), only one of which (E2) is coupled to Ca2+ transport. The E1 in equilibrium E2 equilibrium is temperature-dependent and entropy-driven, indicative of its relation to the physical state of the ATPase protein in its membrane environment. Thenonlinearity of Arrhenius plots of Ca2+-dependent ("extra") ATPase activity and Ca2+ transport is explained in terms of simultaneous contribtuions from both the free energy of activation of enzyme catalysis and the free energy of conversion of E1 to E2. Thermal equilibrium between the two functional states is drastically altered by factors which affect membrane structure and local viscosity. 相似文献
19.
The influence of Ca2+ and H+ concentrations on the sequential reactions of the ATPase cycle was studied by a series of pre-steady state and steady state experiments with sarcoplasmic reticulum vesicles. It is shown that H+ competition with calcium binding results in a reduced population of activated enzyme, which is manifested by a lower level of phosphorylated enzyme intermediate following addition of ATP. Further effects of Ca2+ and H+ are demonstrated on the progression of the phosphoenzyme through the reaction cycle and on the final hydrolytic cleavage of Pi. The overall dependence of steady state ATP flux on Ca2+ and H+ concentrations in leaky vesicles is expressed by a series of curves showing that as the H+ concentration is raised higher Ca2+ concentrations are required to obtain half-maximal ATP fluxes. At saturating Ca2+, maximal ATP fluxes are observed at an intermediate H+ concentration (pH 7.2), while lower levels are obtained as the H+ concentration is reduced (to pH 8) or increased (to pH 6). A preliminary model is then proposed based on the presence of two interacting domains permitting competitive binding of Ca2+ or H+, per each catalytic site undergoing phosphorylation by ATP. The model considers three main states and thirteen substates (depending on the occupancy of the binding sites in each state by Ca2+, H+, or neither) in the progression of the ATP cycle, coupled to transport of Ca2+ and counter transport of H+ in leaky vesicles. Considering the preliminary nature of the model and the experimental scatter, a rather satisfactory agreement is noted between a family of curves generated by theoretical analysis and the ATP flux curves obtained experimentally. 相似文献
20.
With the use of continuous sucrose density gradient a highly purified preparation of vesicles of fragmented sarcoplasmic reticulum was obtained and its lipid content was determined. 相似文献