首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A wide variety of modified oligonucleotides have been tested as antisense agents. Each chemical modification produces a distinct profile of potency, toxicity, and specificity. Novel cationic phosphoramidate-modified antisense oligonucleotides have been developed recently that have unique and interesting properties. We compared the relative potency and specificity of a variety of established antisense oligonucleotides, including phosphorothioates (PS), 2'-O-methyl (2'OMe) RNAs, locked nucleic acids (LNAs), and neutral methoxyethyl (MEA) phosphoramidates with new cationic N,N-dimethylethylenediamine (DMED) phosphoramidate-modified antisense oligonucleotides. A series of oligonucleotides was synthesized that targeted two sites in the Xenopus laevis survivin gene and were introduced into Xenopus embryos by microinjection. Effects on survivin gene expression were examined using quantitative real-time PCR. Of the various modified oligonucleotide designs tested, LNA/PS chimeras (which showed the highest melting temperature) and DMED/phosphodiester chimeras (which showed protection of neighboring phosphate bonds) were potent in reducing gene expression. At 40 nM, overall specificity was superior for the LNA/PS-modified compounds compared with the DMED-modified oligonucleotides. However, at 400 nM, both of these compounds led to significant degradation of survivin mRNA, even when up to three mismatches were present in the heteroduplex.  相似文献   

2.
Chen Y  Ji YJ  Conrad C 《BioTechniques》2003,34(1):167-171
Antisense therapy involves the use of antisense oligonucleotides for altering targeted gene function. However, the low efficiency of cell delivery of antisense oligonucleotides has limited the efficacy of antisense therapeutic approaches. RNA-based antisense or ribozyme oligonucleotides can be either synthesized endogenously (e.g., by a viral vector) or delivered exogenously. However, there is presently no vector delivery system available for DNA-based oligonucleotides. Recently, a novel ssDNA expression vector that can generate intracellularly any ssDNA molecule, such as antisense oligonucleotide or DNA enzyme, has been developed in our laboratory. Here we describe an improved expression vector based on the first-generation two-vector system. To test this new expression vector, we chose to express a single-stranded "10-23" DNA enzyme targeting c-raf mRNA in the human lung carcinoma A549 cell line. After introduction into cells by transient transfection, c-raf-cleaving DNA enzymes produced by this expression vector can significantly suppress the expression of c-raf mRNA. Furthermore, the expressed c-raf DNA enzymes induced cell apoptosis, as indicated by genomic DNA fragmentation assay. Our study further demonstrates the feasibility of using this novel ssDNA expression technology to produce intracellularly any sequence of interest, including antisense oligonucleotides and DNA enzyme molecules.  相似文献   

3.
We studied the effects of antisense oligonucleotides (AS oligos) with a novel structure. The AS oligos were covalently closed to avoid exonuclease activities by enzymatic ligation of two identical molecules. The AS oligos of a ribbon type (RiAS oligos) consist of two loops containing multiple antisense sequences and a stem connecting the two loops. Three antisense sequences targeting different binding sites were placed in a loop that was designed to form a minimal secondary structure by itself. RiAS oligos were found to be stable because they largely preserved their structural integrity after 24 h incubation in the presence of either exonuclease III or serums. When a human promyelocytic cell line, HL-60, was treated with RiAS oligos to c-myb, c-myb expression was effectively ablated. Cell growth was inhibited by >90% determined by both the 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetrazolium bromide assay and [(3)H]thymidine incorporation. Further, when the leukemic cell line K562 was treated with c-myb RiAS oligos, colony formation on soft agarose was reduced by 92 +/- 2%. These results suggest that RiAS oligos may be employed for developing molecular antisense drugs as well as for the functional study of a gene.  相似文献   

4.
Use of antisense oligonucleotides is a versatile strategy for achieving control of gene expression. Unfortunately, the interpretation of antisense-induced phenotypes is sometimes difficult, and chemical modifications that improve the potency and specificity of antisense action would be useful. The introduction of locked nucleic acid (LNA) bases into oligonucleotides confers exceptional improvement in binding affinity, up to 10°C per substitution, making LNAs an exciting option for the optimization of antisense efficacy. Here we examine the rules governing antisense gene inhibition within cells by oligonucleotides that contain LNA bases. LNA- containing oligomers were transfected into cells using cationic lipid and accumulated in the nucleus. We tested antisense gene inhibition by LNAs and LNA–DNA chimeras complementary to the 5′-untranslated region, the region surrounding the start codon and the coding region of mRNA, and identified effective antisense agents targeted to each of these locations. Our data suggest that LNA bases can be used to develop antisense oligonucleotides and that their use is a versatile approach for efficiently inhibiting gene expression inside cells.  相似文献   

5.
Suppression of telomerase activity in tumor cells has been considered as a new anticancer strategy. Here, we present chimeric oligonucleotides (chimeric ODNs) as a new type of telomerase inhibitor that contains differently modified oligomers to address two different sites of telomerase: the RNA template and a suggested protein motif. We have shown previously that phosphorothioate-modified oligonucleotides (PS ODNs) interact in a length-dependent rather than in a sequence-dependent manner, presumably with the protein part of the primer-binding site of telomerase, causing strong inhibition of telomerase. In the present study, we demonstrate that extensions of these PS ODNs at their 3'-ends with an antisense oligomer partial sequence covering 11 bases of the RNA template cause significantly increased inhibitory activity, with IC(50) values between 0.60 and 0.95 nM in a Telomeric Repeat Amplification Protocol (TRAP) assay based on U-87 cell lysates. The enhanced inhibitory activity is observed regardless of whether the antisense part is modified (phosphodiester, PO; 2'-O-methylribosyl, 2'-OMe/PO; phosphoramidate, PAM). However, inside intact U-87 cells, these modifications of the antisense part proved to be essential for efficient telomerase inhibition 20 hours after transfection. In particular, the chimeric ODNs containing PAM or 2'-OMe/PO modifications, when complexed with lipofectin, were most efficient telomerase inhibitors (ID(50) = 0.04 and 0.06 microM, respectively). In conclusion, ODNs of this new type emerged as powerful inhibitors of human telomerase and are, therefore, promising candidates for further investigations of the anticancer strategy of telomerase inhibition.  相似文献   

6.
One novel strategy for the blockade of the androgen receptor could be the selective inhibition of androgen receptor by antisense oligonucleotides or small interfering RNA molecules. Here we describe the down regulation of the androgen receptor in cultured human SZ95 sebocytes with antisense oligonucleotides modified with phosphorothioates and 2'- O-methylribosyl residues. The ability of antisense oligonucleotides to cross the cellular membrane was enhanced by establishing a transient transfection system based on cationic lipid vesicles. Both antisense oligonucleotide types administered caused assumedly translational arrest. Dose-dependent inhibition of androgen receptor protein expression was observed after SZ95 sebocyte transfection with modified phosphorothioate oligonucleotides and modified 2'- O-methylribonucleotides which were directed against the translational start of the androgen receptor mRNA. The strongest transient inhibition of androgen receptor expression was detected after 14 hours with 1.0 muM antisense 2'- O-methylribonucleotides (88+/-1.3%, p<0.001). With longer recovery times than 24 hours, androgen receptor protein expression returned to the native control levels. Inhibition of the expression of androgen receptor by antisense oligonucleotides, reduced the enhanced proliferation of SZ95 sebocytes challenged by testosterone and 5alpha-dihydrotestosterone. This administration opens new therapeutic possibilities in androgen-associated skin diseases, since we could also show androgen inhibition with these antisense oligonucleotides in a reconstituted human epidermis model (Horm Metab Res 2007; 39:157-165).  相似文献   

7.
The phosphorodiamidate Morpholino oligomers (PMO) are a new class of antisense agents that inhibit gene expression by binding to RNA and sterically blocking processing or translation. In a search for a Morpholino agent that would inhibit cell proliferation, it was found that oligomers directed against c-myc, a gene involved in control of the cell cycle, were effective. The sequence specificity and mechanism of action of one agent were determined. The 20-mer 126 lowers c-myc protein levels in treated cells and arrests cells in G0/G1 of the cell cycle. It also acts at the RNA level to inhibit normal pre-mRNA splicing and instead produces an aberrantly spliced mRNA. Irrelevant and mispair control oligomers indicated that the observed antiproliferative effect was sequence specific. This was confirmed in a reporter gene model system using a c-myc 5'-untranslated region (5'-UTR) fused to a cDNA copy of the insect luciferase gene. We conclude that 126 is acting through an antisense mechanism involving Watson-Crick hydrogen bonding to its target RNA. A specific antisense agent directed against a cell cycle-associated gene mRNA may be useful as a therapeutic in diseases characterized by excess cell proliferation, such as restenosis following balloon angioplasty or cancer.  相似文献   

8.
An important objective in developing new drugs is the achievement of high specificity to maximize curing effect and minimize side-effects, and high specificity is an integral part of the antisense approach. The antisense techniques have been extensively developed from the application of simple long, regular antisense RNA (asRNA) molecules to highly modified versions conferring resistance to nucleases, stability of hybrid formation and other beneficial characteristics, though still preserving the specificity of the original nucleic acids. These new and improved second- and third-generation antisense molecules have shown promising results. The first antisense drug has been approved and more are in clinical trials. However, these antisense drugs are mainly designed for the treatment of different human cancers and other human diseases. Applying antisense gene silencing and exploiting RNA interference (RNAi) are highly developed approaches in many eukaryotic systems. But in bacteria RNAi is absent, and gene silencing by antisense compounds is not nearly as well developed, despite its great potential and the intriguing possibility of applying antisense molecules in the fight against multiresistant bacteria. Recent breakthrough and current status on the development of antisense gene silencing in bacteria including especially phosphorothioate oligonucleotides (PS-ODNs), peptide nucleic acids (PNAs) and phosphorodiamidate morpholino oligomers (PMOs) will be presented in this review.  相似文献   

9.
M K Ghosh  K Ghosh  O Dahl    J S Cohen 《Nucleic acids research》1993,21(24):5761-5766
An all phosphorodithioate oligodeoxyribonucleotide (PS2; 17-mer) complementary to the coding region of the rabbit beta-globin mRNA was compared with the normal (PO2) and phosphorothioate (POS) oligonucleotide of the same size and sequence with respect to physicochemical properties and antisense activity in cell-free systems. The melting temperature (Tm) of the PS2-cDNA duplex was reduced by 17 degrees C relative to the PO2-cDNA duplex, compared to 11 degrees C for the POS-cDNA duplex, suggesting a decreased stability of the duplex with an increasing sulfur substitution. Like the POS-derivative, the PS2 oligonucleotide is quite stable against exonucleases, but these modified oligonucleotides showed different stability towards endonucleases and also towards different sub-cellular fractions of MCF-7 cells. During in vitro protein binding studies, the PS2 oligonucleotide showed similar binding (10-20%) to that of the PO2 oligonucleotide, while the POS oligonucleotide bound 60%. In cell-free translation, the PS2 oligonucleotide produced slightly higher specific translation inhibition of rabbit beta-globin mRNA compared to that of the PO2 oligonucleotide, and this was true only at concentration below 2 mM. The POS-derivative, except at 10 mM concentration, always showed higher translation arrest of the rabbit beta-globin mRNA compared to that of the other two oligonucleotides. The present study suggests that the PS2 oligonucleotide offers very little advantage over the POS oligonucleotide for use as an antisense analog.  相似文献   

10.
11.
Specific gene expression regulation strategy using antisense oligonucleotides occupy significant space in recent clinical trials. The therapeutical potential of oligos lies in the identification and prediction of accurate oligonucleotides against specific target mRNA. In this work we present a computational method that is built on Artificial Neural Network (ANN) which could recognize and predict oligonucleotides effectively. In this study first we identified 11 major parameters associated with oligo:mRNA duplex linkage. A feed forward multilayer perceptron ANN classifier is trained with a set of experimentally proven feature vectors. The classifier gives an exact prediction of the input sequences under 2 classes – oligo or non-oligo. On validation, our tool showed comparatively significant accuracy of 92.48% with 91.7% sensitivity and 92.09% specificity. This study was also able to reveal the relative impact of individual parameters we considered on antisense oligonucleotide predictions.  相似文献   

12.
Human keratinocytes are highly responsive to mitogenic and antiapoptotic signaling by the insulin-like growth factor-I receptor (IGF-IR). IGF-IR hyperstimulation is a feature of hyperplastic skin conditions, making the IGF-IR an appealing target for antisense therapeutic intervention. In this study, we used a C5-propynyl-dU,dC-phosphorothioate oligo-2'-deoxyribonucleotide antisense 15-mer to the human IGF-IR mRNA, along with liposome transfection, to inhibit IGF-IR activity in a human keratinocyte cell line and demonstrated potent inhibition of cell growth despite the presence of serum. To investigate the sequence specificity of these effects and to establish the concentration range over which a purely antisense effect could be demonstrated, we introduced 1, 2, 4, 8, and 15 base mismatches into the oligonucleotide and analyzed changes in inhibitory efficacy. In the 10-30 nM concentration range, the introduction of 1 and 2 mismatches into the middle of the 15-mer only modestly affected inhibitory efficacy, whereas >4 mismatches profoundly reduced mRNA, protein, and growth-inhibitory effects. From these results, we conclude that (1) sequence-specific antisense inhibition of IGF-IR activity in keratinocytes is achievable, (2) potent anti-IGF-IR antisense inhibition can be achieved in vitro at concentrations as low as 10 nM, and (3) a sequence-dependent mechanism is likely to underpin the observed in vivo therapeutic effects (Wraight et al. Nat. Biotechnol. 2000;18:521) of these antisense oligonucleotides (AS-ODN) in cutaneous hyperplastic disorders, such as psoriasis.  相似文献   

13.
Antisense oligonucleotides are commonly employed to study the roles of genes in development. Although morpholino phosphorodiamidate oligonucleotides (morpholinos) are widely used to block translation or splicing of target gene products' the usefulness of other modifications in mediating RNase-H independent inhibition of gene activity in embryos has not been investigated. In this study, we investigated the extent that fully modified 2'-O-methyl oligonucleotides (2'-OMe oligos) that can function as translation inhibiting reagents in vivo, using Xenopus and zebrafish embryos. We find that oligos against Xenopus β-catenin, wnt11, and bmp4 and against zebrafish chordin (chd), which can efficiently and specifically generate embryonic loss-of-function phenotypes comparable with morpholino injection and other methods. These results show that fully modified 2'-OMe oligos can function as RNase-H independent antisense reagents in vertebrate embryos and can thus serve as an alternative modification to morpholinos in some cases.  相似文献   

14.
Antisense oligonucleotides have been widely used to achieve specific inhibition of targeted gene expression. However, the mechanism of action is not well understood and in many systems sequence-independent effects occur. We have recently shown that chronic administration of an antisense c-myc phosphorothioate oligonucleotide can specifically inhibit expression of the c-myc protein and growth in human breast cancer cells. We now identify an additional effect of the same oligonucleotide on cell adhesion. Transient delivery through electroporation of 2.5 microM antisense-myc oligonucleotide to MCF-7 cells results in 85% inhibition of adhesion to plastic substratum within 24 h. Both the onset of this effect and the subsequent recovery occur without a change in cell viability, growth, or alteration of adhesion to Matrigel, collagen IV, laminin, or fibronectin. However, no parallel changes in c-myc mRNA or protein expression are detectable, suggesting that in this instance inhibition of adhesion caused by antisense-myc oligonucleotide may involve a mechanism independent of the target sequence.  相似文献   

15.
MOTIVATION: Both small interfering RNAs (siRNAs) and antisense oligonucleotides can selectively block gene expression. Although the two methods rely on different cellular mechanisms, these methods share the common property that not all oligonucleotides (oligos) are equally effective. That is, if mRNA target sites are picked at random, many of the antisense or siRNA oligos will not be effective. Algorithms that can reliably predict the efficacy of candidate oligos can greatly reduce the cost of knockdown experiments, but previous attempts to predict the efficacy of antisense oligos have had limited success. Machine learning has not previously been used to predict siRNA efficacy. RESULTS: We develop a genetic programming based prediction system that shows promising results on both antisense and siRNA efficacy prediction. We train and evaluate our system on a previously published database of antisense efficacies and our own database of siRNA efficacies collected from the literature. The best models gave an overall correlation between predicted and observed efficacy of 0.46 on both antisense and siRNA data. As a comparison, the best correlations of support vector machine classifiers trained on the same data were 0.40 and 0.30, respectively.  相似文献   

16.
To study the role of a nuclear proto-oncogene in the regulation of cell growth and differentiation, we inhibited HL-60 c-myc expression with a complementary antisense oligomer. This oligomer was stable in culture and entered cells, forming an intracellular duplex. Incubation of cells with the anti-myc oligomer decreased the steady-state levels of c-myc protein by 50 to 80%, whereas a control oligomer did not significantly affect the c-myc protein concentration. Direct inhibition of c-myc expression with the anti-myc oligomer was associated with a decreased cell growth rate and an induction of myeloid differentiation. Related antisense oligomers with 2- to 12-base-pair mismatches with c-myc mRNA did not influence HL-60 cells. Thus, the effects of the antisense oligomer exhibited sequence specificity, and furthermore, these effects could be reversed by hybridization competition with another complementary oligomer. Antisense inhibition of a nuclear proto-oncogene apparently bypasses cell surface events in affecting cell proliferation and differentiation.  相似文献   

17.
18.
19.
The lack of specificity of cancer treatment causes damage to normal cells as well, which limits the therapeutic range. To circumvent this problem one would need to use an absolute difference between normal cells and cancer cells as therapeutic target. Such a difference exists in the genome of all individuals suffering from a tumor that is characterized by loss of genetic material [loss of heterozygosity (LOH)]. Due to LOH, the tumor is hemizygous for a number of genes, whereas the normal cells of the individual are heterozygous for these genes. Theoretically, polymorphic sites in these genes can be utilized to selectively target the cancer cells with an antisense oligonucleotide, provided that it can discriminate the alleles and inhibit gene expression. Furthermore, the targeted gene should be essential for cell survival, and 50% gene expression sufficient for the cell to survive. This will allow selective killing of cancer cells without concomitant toxicity to normal cells. As an initial step in the experimental test of this putative selective cancer cell therapy, we have developed a set of antisense phosphorothioate oligonucleotides which can discriminate the two alleles of a polymorphic site in the gene encoding the large subunit of RNA polymerase II. Our data show that the exact position of the antisense oligonucleotide on the mRNA is of essential importance for the oligonucleotide to be an effective inhibitor of gene expression. Shifting the oligonucleotide position only a few bases along the mRNA sequence will completely abolish the inhibitory activity of the antisense oligonucleotide. Reducing the length of the oligonucleotides to 16 bases increases the allele specificity. This study shows that it is possible to design oligonucleotides that selectively target the matched allele, whereas the expression level of the mismatched allele, that differs by one nucleotide, is only slightly affected.  相似文献   

20.
Chemical modification of backbone structures has been an important strategy in designing oligonucleotides capable of improved antisense effects. However, altered backbone chemistry may also affect the binding of oligonucleotides to key cellular proteins, and thus may impact on the overall biological action of antisense agents. In this study we have examined the binding of oligonucleotides having four different backbone chemistries to single-strand binding protein (SSB), a protein having a key role in DNA repair and replication. The oligomers tested had the same sequence, while the internucleoside linkages were phosphodiester (PO), phosphorothioate (PS), phosphorodithioate (PS2), or methylphosphonate (MP). We found that both PS and PS2 oligomers bound to SSB with higher affinity than PO oligonucleotides, while MP oligonucleotides did not bind appreciably at the concentrations tested. Oligonucleotide length was also an important factor in binding to SSB, but sequence was less critical. These observations indicate that backbone chemistry is an important factor in interactions between oligonucleotides and critical cellular proteins, and thus may be a key determinant of the biological effects of antisense oligonucleotides. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号