首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glutaminase is widely distributed among microorganisms and mammals with important functions. Little is known regarding the biochemical properties and functions of the deamidating enzyme glutaminase in cyanobacteria. In this study a putative glutaminase encoded by gene slr2079 in Synechocystis sp. PCC 6803 was investigated. The slr2079 was expressed as histidine-tagged fusion protein in Escherichia coli. The purified protein possessed glutaminase activity, validating the functional assignment of the genomic annotation. The apparent K m value of the recombinant protein for glutamine was 26.6 ± 0.9 mmol/L, which was comparable to that for some of other microbial glutaminases. Analysis of the purified protein revealed a two-fold increase in catalytic activity in the presence of 1 mol/L Na+. Moreover, the K m value was decreased to 12.2 ± 1.9 mmol/L in the presence of Na+. These data demonstrate that the recombinant protein Slr2079 is a glutaminase which is regulated by Na+ through increasing its affinity for substrate glutamine. The slr2079 gene was successfully disrupted in Synechocystis by targeted mutagenesis and the Δslr2079 mutant strain was analyzed. No differences in cell growth and oxygen evolution rate were observed between Δslr2079 and the wild type under standard growth conditions, demonstrating slr2079 is not essential in Synechocystis. Under high salt stress condition, however, Δslr2079 cells grew 1.25-fold faster than wild-type cells. Moreover, the photosynthetic oxygen evolution rate of Δslr2079 cells was higher than that of the wild-type. To further characterize this phenotype, a number of salt stress-related genes were analyzed by semi-quantitative RT-PCR. Expression of gdhB and prc was enhanced and expression of desD and guaA was repressed in Δslr2079 compared to the wild type. In addition, expression of two key enzymes of ammonium assimilation in cyanobacteria, glutamine synthetase (GS) and glutamate synthase (GOGAT) was examined by semi-quantitative RT-PCR. Expression of GOGAT was enhanced in Δslr2079 compared to the wild type while GS expression was unchanged. The results indicate that slr2079 functions in the salt stress response by regulating the expression of salt stress related genes and might not play a major role in glutamine breakdown in Synechocystis. Supported by the National Natural Sciences Foundation of China (Grant No. 30500108) and Hundred Talents Program of Chinese Academy of Sciences.  相似文献   

2.
3.
Summary. Among prokaryotes, cyanobacteria are unique in having highly differentiated internal membrane systems. Like other Gram-negative bacteria, cyanobacteria such as Synechocystis sp. strain PCC 6803 have a cell envelope consisting of a plasma membrane, peptidoglycan layer, and outer membrane. In addition, these organisms have an internal system of thylakoid membranes where the electron transfer reactions of photosynthesis and respiration occur. A long-standing controversy concerning the cellular ultrastructures of these organisms has been whether the thylakoid membranes exist inside the cell as separate compartments, or if they have physical continuity with the plasma membrane. Advances in cellular preservation protocols as well as in image acquisition and manipulation techniques have facilitated a new examination of this topic. We have used a combination of electron microscopy techniques, including freeze-etched as well as freeze-substituted preparations, in conjunction with computer-aided image processing to generate highly detailed images of the membrane systems in Synechocystis cells. We show that the thylakoid membranes are in fact physically discontinuous from the plasma membrane in this cyanobacterium. Thylakoid membranes in Synechocystis sp. strain PCC 6803 thus represent bona fide intracellular organelles, the first example of such compartments in prokaryotic cells. Supplementary material to this paper is available in electronic form at Correspondence and reprints: Department of Biology, CB1137, Washington University, St. Louis, MO 63130, U.S.A.  相似文献   

4.
Membranes and PS II particles retaining high rates of O2-evolving activity have been isolated from the transformable cyanobacterium, Synechocystis sp. PCC6803. Membranes from cells grown under red light exhibit rates of O2-evolution ranging from 500–700 mole O2/mg chl/h. PS II particles are prepared by a simple procedure involving DEAE column chromatography of detergent extracts obtained by simultaneous treatment of membranes with octylglucoside and dodecylmaltoside. The isolated PS II fraction is enriched in polypeptides immunologically cross-reactive with polypeptides present in core reaction center preparations of spinach, exhibits 77 K fluorescence emission maxima at 685 and 696 nm, but not emission and absorption due to phycobilines and is capable of rates of O2-evolution exceeding 1000 mole O2/mg chl/h.Abbreviations DM dodecyl--D-maltoside - OG octyl--D-glucoside  相似文献   

5.
The genome of Synechocystis sp. PCC 6803 contains an operon with homology to the sulfate permease of other prokaryotes. We used antibodies raised against cytoplasmic membrane protein to find three genes with strong homology to sbpA, orf81 and cysT genes of the cyanobacterium Synechococcus sp. PCC 7942, Escherichia coli, Salmonella typhymurium and Marchantia polymorpha. It is likely that the permease genes are expressed and the proteins are inserted into the cytoplasmic membrane.  相似文献   

6.
As a means to improve carbon uptake in the cyanobacterium Synechocystis sp. strain PCC6803, we engineered strains to contain additional inducible copies of the endogenous bicarbonate transporter BicA, an essential component of the CO2-concentrating mechanism in cyanobacteria. When cultured under atmospheric CO2 pressure, the strain expressing extra BicA transporters (BicA+ strain) grew almost twice as fast and accumulated almost twice as much biomass as the control strain. When enriched with 0.5% or 5% CO2, the BicA+ strain grew slower than the control but still showed a superior biomass production. Introducing a point mutation in the large C-terminal cytosolic domain of the inserted BicA, at a site implicated in allosteric regulation of transport activity, resulted in a strain (BicA+(T485G) strain) that exhibited pronounced cell aggregation and failed to grow at 5% CO2. However, the bicarbonate uptake capacity of the induced BicA+(T485G) was twice higher than for the wild-type strain. Metabolic analyses, including phenotyping by synchrotron-radiation Fourier transform Infrared spectromicroscopy, scanning electron microscopy, and lectin staining, suggest that the excess assimilated carbon in BicA+ and BicA+(T485G) cells was directed into production of saccharide-rich exopolymeric substances. We propose that the increased capacity for CO2 uptake in the BicA+ strain can be capitalized on by re-directing carbon flux from exopolymeric substances to other end products such as fuels or high-value chemicals.  相似文献   

7.
Structural role of the second copy of the rod–core linker CpcG, which was found by genome analysis, was studied in Synechocystis sp. PCC 6803 by gene disruption and fractionation of phycobilisome (sub)complexes. Disruption of cpcG2 (sll1471) resulted in a marked decrease in phycocyanin content both in the background of wild-type and cpcG1 (slr2051)-disruptant. The unique phycocyanin rod–CpcG2 complex without the major allophycocyanin components was isolated from the cpcG1-disruptant. By fluorescence analysis, it was proposed that CpcG2 protein connects the rods with a minor allophycocyanin component, to support energy transfer to Photosystem I.  相似文献   

8.
Mutants affected in their pigment content and in the structure of their phycobilosomes (PBS) were isolated in the cyanobacterium Synechocystis PCC 6803 by enriching a population with the inhibitor p-hydroxymercuribenzoate. Three of these mutants, PMB 2, PMB 10 and PMB 11, with original phenotypes, are described. Applying several criteria of analysis (77K absorption and fluorescence, protein electrophoretic patterns, electron microscopy), it was possible to assign the component polypeptides to each substructure of the phycobilisome. The model structure obtained fits with those described in other species PMB 10 and PMB 11, completely lacking PC, are the first source of pure PBS cores available, in which no contamination by residual PC can be feared, and are thus particularly interesting for further biochemical studies. The capacity of genetic transformation of Synechocystis PCC 6803 by chromosomal DNA makes this system very convenient for the analysis of the regulation of synthesis of the PBS constituents.Abbreviations PSI, PSII photosystems I, II - PBS phycobilisomes - PC phycocyanin - APC allophycocyanin - APC-B alophycocyanin B - PE phycoerythrin - PEC phycoerythrocyanin - WT wind type - Chl chlorophyll Present address: Service de Physiologie Microbienne Institut Pasteur, 28, rue du Docteur Roux, F-75724 Paris Cedex 15, France  相似文献   

9.
The cyanobacterium Synechocystis sp. PCC 6803 harbours 47 histidine kinases (Hiks). Among these are hybrid histidine kinases with one or two response regulator domains as well as numerous Hiks with several sensory domains. One example is the hybrid histidine kinase Slr1759 (Hik14) that has two PAS domains arranged in tandem linked to a predicted GAF domain. Here, we show that a Slr1759 derivative recombinantly expressed in Escherichia coli has a flavin cofactor. Using truncated Slr1759 variants, it is shown that the flavin associates with the first PAS domain. The cofactor reconstitutes the activity of d-amino acid oxidase apoprotein from pig kidney, indicating that the flavin derivative is FAD. Furthermore, the Slr1759 histidine kinase domain indeed undergoes autophosphorylation in vitro. The phosphorylated product of a recombinant Slr1759 derivative is sensitive to acids, pointing to a histidine residue as the phosphate-accepting group.  相似文献   

10.
11.
12.
The first two genes of ferredoxin-dependent glutamate synthase (Fd-GOGAT) from a prokaryotic organism, the cyanobacterium Synechocystis sp. PCC 6803, were cloned in Escherichia coli. Partial sequencing of the cloned genomic DNA, of the 6.3 kb Hind III and 9.3 kb Cla I fragments, confirmed the existence of two different genes coding for glutamate synthases, named gltB and gltS. The gltB gene was completely sequenced and encodes for a polypeptide of 1550 amino acid residues (M r 168 964). Comparative analysis of the gltB deduced amino acid sequence against other glutamate synthases shows a higher identity with the alfalfa NADH-GOGAT (55.2%) than with the corresponding Fd-GOGAT from the higher plants maize and spinach (about 43%), the red alga Antithamnnion sp. (42%) or with the NADPH-GOGAT of bacterial source, such as Escherichia coli (41%) and Azospirillum brasilense (45%). The detailed analysis of Synechocystis gltB deduced amino acid sequence shows strongly conserved regions that have been assigned to the 3Fe-4S cluster (CX5CHX3C), the FMN-binding domain and the glutamine-amide transferase domain. Insertional inactivation of gltB and gltS genes revealed that both genes code for ferredoxin-dependent glutamate synthases which were nonessential for Synechocystis growth, as shown by the ferredoxin-dependent glutamate synthase activity and western-blot analysis of the mutant strains.  相似文献   

13.
14.
As phylogenetic ancestors of plant chloroplasts cyanobacteria resemble plastids with respect to lipid and fatty acid composition. These membrane lipids show the typical prokaryotic fatty acid pattern in which the sn-2 position is exclusively esterified by C(16) acyl groups. In the course of de novo glycerolipid biosynthesis this prokaryotic fatty acid pattern is established by the sequential acylation of glycerol-3-phosphate with acyl-ACPs by the activity of different acyltransferases. In silico approaches allowed the identification of putative Synechocystis acyltransferases involved in glycerolipid metabolism. Functional expression studies in Escherichia coli showed that sll1848 codes for a lysophosphatidic acid acyltransferase with a high specificity for 16:0-ACP, whereas slr2060 encodes a lysophospholipid acyltransferase, with a broad acyl-ACP specificity but a strong preference for lysophosphatidyglycerol especially its sn-2 acyl isomer as acyl-acceptor. The generation and analysis of the corresponding Synechocystis knockout mutants revealed that lysophosphatidic acid acyltransferase unlike the lysophospholipid acyltransferase is essential for the vital functions of the cells.  相似文献   

15.
Photosystem I catalyzes the light-driven oxidation of plastocyanin or cytochrome c 6 and the reduction of ferredoxin or flavodoxin. PsaJ is a 4.4 kDa hydrophobic subunit of photosystem I from cyanobacteria and chloroplasts. To investigate the function of PsaJ, we generated a mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 in which the psaJ gene is replaced by a gene for chloramphenicol resistance. Deletion of psaJ led to a reduction in the steady state RNA level from psaF which is located upstream from psaJ. Immunoquantification using an anti-PsaF antibody revealed a significant decrease in the amount of PsaF in membranes of the mutant strain. Trimeric photosystem I complexes isolated from the mutant strain using n-dodecyl -D-maltoside lacked PsaJ, contained ca. 80% less PsaF, but maintained wild-type levels of other photosystem I subunits. In contrast, the photosystem I purified using Triton X-100 contained less than 2% PsaF when compared to the wild type, showing the more extractable nature of PsaF in PsaJ-less photosystem I in the presence of Triton X-100. PsaE was more accessible to removal by NaI in a mutant strain lacking PsaF and PsaJ than in the wild type. The presence of PsaF in photosystem I from the PsaJ-less strain did not alter the increased susceptibility of PsaE to removal by NaI. These results indicate an interaction between PsaJ and PsaF in the organization of the complex.  相似文献   

16.
Various post-translational modifications (PTMs) of pilin in Synechocystis sp. PCC 6803 have been proposed. In this study, we investigated previously unidentified PTMs of pilin by mass spectrometry (MS). MALDI-TOF MS and TOF/TOF MS showed that the molecular mass of the C-terminal lysine of pilin was increased by 42 Da, which could represent acetylation (ΔM = 42.0470) or trimethylation (ΔM = 42.0106). To discriminate between these isobaric modifications, the molecular mass of the C-terminal tryptic peptide was measured using 15T Fourier transform ion cyclotron resonance (FT-ICR) MS. The high magnetic field FT-ICR provided sub-ppm mass accuracy, revealing that the C-terminal lysine was modified by trimethylation. We could also detect the existence of mono- and di-methylation of the C-terminal lysine. Cells expressing a pilin point mutant with glutamine replacing the C-terminal lysine showed dramatically reduced motility and short pili. These findings suggest that trimethylation of pilin at the C-terminal lysine may be essential for the biogenesis of functional pili.  相似文献   

17.
18.
The reaction center of photosystem (PS) I is comprised of a heterodimer of homologous polypeptides, PsaA and PsaB. In order to investigate the biogenesis of PS I, the psaB gene was inactivated by targeted mutagenesis in the unicellular cyanobacterium Synechocystis 6803. This mutation resulted in disruption of stable PS I assembly, but PS II assembled normally. Expression of the psaA gene was not affected by the mutation, but PsaA protein was not detected, indicating that stable PsaA homodimers did not form. The ability to inactivate psaB makes it a viable target for site-directed mutagenesis.  相似文献   

19.
The plastid DNA of higher plants contains eleven reading frames that are homologous to subunits of the mitochondrial NADH-ubiquinone oxidoreductase (complex I). The genes are expressed, but a plastid NAD(P)H dehydrogenase has not yet been isolated and the function of the enzyme in plastid metabolism is unknown. Cyanobacteria also contain a NADH dehydrogenase that is homologous to the mitochondrial complex I. The enzyme is sensitive to rotenone and is located on the cytoplasmic and the thylakoid membrane. We report here the sequence of five subunits (ndhA, -I, G, -E and -D) of the NADH dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC6803. As in plastid DNA, the genes ndh(A-I-G-E) are clustered and probably constitute an operon. The ndhD gene is associated with a gene encoding an iron-sulphur protein of photosystem I (psaC) as in plastid DNA. In contrast to the situation in plastids, psaC and ndhD are not cotranscribed but transcribed from opposite strands. The deduced amino acid sequence of the cyanobacterial polypeptides is more similar to the corresponding plastid (40-68% identity) than to the corresponding mitochondrial subunits (17-39% identity). Thus, the cyanobacterial NADH-dehydrogenase provides a prokaryotic model system which is more suitable to genetic analysis than the enzyme of plastids.  相似文献   

20.
A mutant strain of the cyanobacterium Synechocystis sp. PCC (Pasteur Culture Collection) 6803 has been developed in which psbB, the gene coding for the chlorophyl a-binding protein CP47 in Photosystem II (PSII), has been deleted. This deletion mutant can be used for the reintroduction of modified psbB into the cyanobacterium. To study the role of a large hydrophilic region in CP47, presumably located on the lumenal side of the thylakoid membrane between the fifth and sixth membrane-spanning regions, specific deletions have been introduced in psbB coding for regions within this domain. One psbB mutation leads to deletion of Gly-351 to Thr-365 in CP47, another psbB mutation was targeted towards deletion of Arg-384 to Val-392 in this protein. The deletion from Gly-351 to Thr-365 results in a loss of PSII activity and of photoautotrophic growth of the mutant, but the deletion between Arg-384 and Val-392 retains PSII activity and the ability to grow photoautotrophically. The mutant strain with the deletion from Gly-351 to Thr-365 does not assemble a stable PSII reaction center complex in its thylakoid membranes, and exhibits diminished levels of CP47 and of the reaction center proteins D1 and D2. In contrast to the Arg-384 to Val-392 portion of this domain, the region between Gly-351 and Thr-365 appears essential for the normal structure and function of photosystem II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号