首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
UV irradiation has multiple effects on mammalian cells, including modification of ion channel function. The present study was undertaken to investigate the response of membrane currents in guinea-pig ventricular myocytes to the type A (355, 380 nm) irradiation commonly used in Ca2+ imaging studies. Myocytes configured for whole-cell voltage clamp were generally held at −80 mV, dialyzed with K+-, Na+-free pipette solution, and bathed with K+-free Tyrode’s solution at 22°C. During experiments that lasted for ≈ 35 min, UVA irradiation caused a progressive increase in slowly-inactivating inward current elicited by 200-ms depolarizations from −80 to −40 mV, but had little effect on background current or on L-type Ca2+ current. Trials with depolarized holding potential, Ca2+ channel blockers, and tetrodotoxin (TTX) established that the current induced by irradiation was late (slowly-inactivating) Na+ current (INa). The amplitude of the late inward current sensitive to 100 μM TTX was increased by 3.5-fold after 20–30 min of irradiation. UVA modulation of late INa may (i) interfere with imaging studies, and (ii) provide a paradigm for investigation of intracellular factors likely to influence slow inactivation of cardiac INa.  相似文献   

2.
Many of the structural domains involved in Ca2+ channel (CACN) inactivation are also involved in determining their sensitivity to antagonist inhibition. We hypothesize that differences in inactivation properties and their structural determinants may suggest candidate domains as targets for the development of novel, selective antagonists. The characteristics of Ca2+ current (ICa) inactivation, steady-state inactivation (SSIN), and recovery from inactivation were studied in freshly dispersed smooth muscle cells from rabbit portal vein (RPV) using whole-cell, voltage-clamp methods. The time course of inactivation could be represented by two time constants. Increasing ICa by increasing [Ca2+]o or with more negative holding potentials decreased both time constants. With Sr2+, Ba2+, or Na+ as the charge carrier, ICa inactivation was also represented by two time constants, both of which were larger than those found with Ca2+. With Ca2+, Sr2+, or Ba2+ as the charge carrier, both time constants had minimum values near the voltage associated with maximum current. When Na+ (140 mM) was the charge carrier, voltages for Imax (−20 mV) or τmin (o mV) did not correspond. SSIN of ICa had a half-maximum voltage of −32±4 mV for Ca2+, −43 mV±5 mV for Sr2+, −41±5 mV for Ba2+, and −68±6 mV for Na+. The slope factor for SSIN per e-fold voltage change was 6.5±0.2 mV for Ca2+, 6.8±0.3 for Sr2+, and 6.6±0.2 for Ba2+, representing four equivalent charges. When Na+ or Li+ was the charge carrier, the slope factor was 13.5±0.7 mV, representing two equivalent charges. For ICa in rat left ventricular (rLV) myocytes, there was no difference in the slope factor of SSIN for Ca2+ and Na+. The rate of recovery of ICa from inactivation varied inversely with recovery voltage and was independent of the charge carrier. These results suggest that inactivation of ICa in PV myocytes possess an intrinsic voltage dependence that is modified by Ca2+. For RPV but not rLV ICa, the charge of the permeating ion confers the voltage-dependency of SSIN.  相似文献   

3.
Effects of intracellular Mg2+ on a native Ca2+-and voltage-sensitive large-conductance K+ channel in cultured human renal proximal tubule cells were examined with the patch-clamp technique in the inside-out mode. At an intracellular concentration of Ca2+ ([Ca2+]i) of 10−5–10−4 M, addition of 1–10 mM Mg2+ increased the open probability (Po) of the channel, which shifted the Po –membrane potential (Vm) relationship to the negative voltage direction without causing an appreciable change in the gating charge (Boltzmann constant). However, the Mg2+-induced increase in Po was suppressed at a relatively low [Ca2+]i (10−5.5–10−6 M). Dwell-time histograms have revealed that addition of Mg2+ mainly increased Po by extending open times at 10−5 M Ca2+ and extending both open and closed times simultaneously at 10−5.5 M Ca2+. Since our data showed that raising the [Ca2+]i from 10−5 to 10−4 M increased Po mainly by shortening the closed time, extension of the closed time at 10−5.5 M Ca2+ would result from the Mg2+-inhibited Ca2+-dependent activation. At a constant Vm, adding Mg2+ enhanced the sigmoidicity of the Po–[Ca2+]i relationship with an increase in the Hill coefficient. These results suggest that the major action of Mg2+ on this channel is to elevate Po by lengthening the open time, while extension of the closed time at a relatively low [Ca2+]i results from a lowering of the sensitivity to Ca2+ of the channel by Mg2+, which causes the increase in the Hill coefficient. M. Kubokawa and Y. Sohma contributed equally to this work.  相似文献   

4.
Large-conductance Ca2+-dependent K+ (BKCa) channels are activated by intracellular Ca2+ and membrane depolarization in an allosteric manner. We investigated the pharmacological and biophysical characteristics of a BKCa-type K+ channel in androgen-dependent LNCaP (lymph node carcinoma of the prostate) cells with novel functional properties, here termed BKL. K+ selectivity, high conductance, activation by Mg2+ or NS1619, and inhibition by paxilline and penitrem A largely resembled the properties of recombinant BKCa channels. However, unlike conventional BKCa channels, BKL channels activated in the absence of free cytosolic Ca2+ at physiological membrane potentials; the half-maximal activation voltage was shifted by about −100 mV compared with BKCa channels. Half-maximal Ca2+-dependent activation was observed at 0.4 μM for BKL (at −20 mV) and at 4.1 μM for BKCa channels (at +50 mV). Heterologous expression of hSlo1 in LNCaP cells increased the BKL conductance. Expression of hSlo-β1 in LNCaP cells shifted voltage-dependent activation to values between that of BKL and BKCa channels and reduced the slope of the Popen (open probability)-voltage curve. We propose that LNCaP cells harbor a so far unknown type of BKCa subunit, which is responsible for the BKL phenotype in a dominant manner. BKL-like channels are also expressed in the human breast cancer cell line T47D. In addition, functional expression of BKL in LNCaP cells is regulated by serum-derived factors, however not by androgens.  相似文献   

5.
Purinergic signalling in rat GFSHR-17 granulosa cells was characterised by Ca2+-imaging and perforated patch-clamp. We observed a resting intracellular Ca2+-concentration ([Ca2+]i) of 100 nM and a membrane potential of −40 mV. This was consistent with high K+− and Cl permeability and a high intracellular Cl concentration of 40 mM. Application of ATP for 5–15 s every 3 min induced repeated [Ca2+]i increases and a 30 mV hyperpolarization. The phospholipase C inhibitor U73122 or the IP3-receptor antagonist 2-aminoethoethyl diphenyl borate suppressed ATP responses. Further biochemical and pharmacological experiments revealed that ATP responses were related to stimulation of P2Y2 and P2Y4 receptors and that the [Ca2+]i increase was a prerequisite for hyperpolarization. Inhibitors of Ca2+-activated channels or K+ channels did not affect the ATP-evoked responses. Conversely, inhibitors of Cl channels hyperpolarized cells to −70 mV and suppressed further ATP-evoked hyperpolarization. We propose that P2Y2 and P2Y4 receptors in granulosa cells modulate Cl permeability by regulating Ca2+-release.  相似文献   

6.
Treatment of bovine pulmonary artery smooth muscle with the O2•− generating system hypoxanthine plus xanthine oxidase stimulated MMP-2 activity and PKC activity; and inhibited Na+ dependent Ca2+ uptake in the microsomes. Pretreatment of the smooth muscle with SOD (the O2•− scavenger) and TIMP-2 (MMP-2 inhibitor) prevented the increase in MMP-2 activity and PKC activity, and reversed the inhibition of Na+ dependent Ca2+ uptake in the microsomes. Pretreatment with calphostin C (a general PKC inhibitor) and rottlerin (a PKCδ inhibitor) prevented the increase in PKC activity and reversed O2•− caused inhibition of Na+ dependent Ca2+ uptake without causing any change in MMP-2 activity in the microsomes of the smooth muscle. Treatment of the smooth muscle with the O2•− generating system revealed, respectively, 36 kDa RACK-1 and 78 kDa PKCδ immunoreactive protein profile along with an additional 38 kDa immunoreactive fragment in the microsomes. The 38 kDa band appeared to be the proteolytic fragment of the 78 kDa PKCδ since pretreatment with TIMP-2 abolished the increase in the 38 kDa immunoreactive fragment. Co-immunoprecipitation of PKCδ and RACK-1 demonstrated O2•− dependent increase in PKCδ-RACK-1 interaction in the microsomes. Immunoblot assay elicited an immunoreactive band of 41 kDa Giα in the microsomes. Treatment of the smooth muscle tissue with the O2•− generating system causes phosphorylation of Giα in the microsomes and pretreatment with TIMP-2 and rottlerin prevented the phosphorylation. Pretreatment of the smooth muscle tissue with pertussis toxin reversed O2•− caused inhibition of Na+ dependent Ca2+ uptake without affecting the protease activity and PKC activity in the microsomes. We suggest the existence of a pertussis toxin sensitive G protein mediated mechanism for inhibition of Na+ dependent Ca2+ uptake in microsomes of bovine pulmonary artery smooth muscle under O2•− triggered condition, which is regulated by PKCδ dependent phosphorylation and sensitive to TIMP-2 for its inhibition. (Mol Cell Biochem xxx: 107–117, 2005)  相似文献   

7.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.  相似文献   

8.
The effect of ANG II on pHi, [Ca2+]i and cell volume was investigated in T84 cells, a cell line originated from colon epithelium, using the probes BCECF-AM, Fluo 4-AM and acridine orange, respectively. The recovery rate of pHi via the Na+/H+ exchanger was examined in the first 2 min following the acidification of pHi with a NH4Cl pulse. In the control situation, the pHi recovery rate was 0.118 ± 0.001 (n = 52) pH units/min and ANG II (10−12 M or 10−9 M) increased this value (by 106% or 32%, respectively) but ANG II (10−7 M) decreased it to 47%. The control [Ca2+]i was 99 ± 4 (n = 45) nM and ANG II increased this value in a dose-dependent manner. The ANG II effects on cell volume were minor and late and should not interfere in the measurements of pHi recovery and [Ca2+]i. To document the signaling pathways in the hormonal effects we used: Staurosporine (a PKC inhibitor), W13 (a calcium-dependent calmodulin antagonist), H89 (a PKA inhibitor) or Econazole (an inhibitor of cytochrome P450 epoxygenase). Our results indicate that the biphasic effect of ANG II on Na+/H+ exchanger is a cAMP-independent mechanism and is the result of: 1) stimulation of the exchanger by PKC signaling pathway activation (at 10−12 – 10−7 M ANG II) and by increases of [Ca2+]i in the lower range (at 10−12 M ANG II) and 2) inhibition of the exchanger at high [Ca2+]i levels (at 10−9 – 10−7 M ANG II) through cytochrome P450 epoxygenase-dependent metabolites of the arachidonic acid signaling pathway.  相似文献   

9.
Internodal cells ofNitella axilliformis had a membrane potential of about−120mV and showed active cytoplasmic streaming with a rate of about 90 μm/sec in artificial pond water (APW) at 25C. When APW was replaced with 50 mM KCl solution, the membrane potential depolarized accompanying an action potential, and the cytoplasmic streaming stopped. Soon after this quick cessation, the streaming started again, but its velocity remained very low for at least 60 min. Removal of KCl from the external medium led to repolarization of the membrane and accelerated recovery of the streaming. The change in the concentration of free Ca2+ in the cytoplasm ([Ca2+]c) was monitored by light emission from aequorin which had previously been injected into the cytoplasm. Upon application of KCl to the external medium, the light emission, i.e., [Ca2+]c, quickly increased. It then decreased exponentially and reached the original low level within 100 sec. The cause of the long-lasting inhibition of cytoplasmic streaming observed even when [Ca2+]c had returned to its low resting level is discussed based on the mechanism proposed for action potential-induced cessation of cytoplasmic streaming; inactivation of myosin by Ca2+-dependent phosphorylation or formation of cross bridge between actin filaments and myosin.  相似文献   

10.
Summary The Ca2+-activated K+ channel in rat pancreatic islet cells has been studied using patch-clamp single-channel current recording in excised inside-out and outside-out membrane patches. In membrane patches exposed to quasi-physiological cation gradients (Na+ outside, K+ inside) large outward current steps were observed when the membrane was depolarized. The single-channel current voltage (I/V) relationship showed outward rectification and the null potential was more negative than –40 mV. In symmetrical K+-rich solutions the single-channelI/V relationship was linear, the null potential was 0 mV and the singlechannel conductance was about 250 pS. Membrane depolarization evoked channel opening also when the inside of the membrane was exposed to a Ca2+-free solution containing 2mm EGTA, but large positive membrane potentials (70 to 80 mV) were required in order to obtain open-state probabilities (P) above 0.1. Raising the free Ca2+ concentration in contact with the membrane inside ([Ca2+]i) to 1.5×10–7 m had little effect on the relationship between membrane potential andP. When [Ca2+]i was increased to 3×10–7 m and 6×10–7 m smaller potential changes were required to open the channels. Increasing [Ca2+]i further to 8×10–7 m again activated the channels, but the relationship between membrane potential andP was complex. Changing the membrane potential from –50 mV to +20 mV increasedP from near 0 to 0.6 but further polarization to +50 mV decreasedP to about 0.2. The pattern of voltage activation and inactivation was even more pronounced at [Ca2+]i=1 and 2 m. In this situation a membrane potential change from –70 to +20 mV increasedP from near 0 to about 0.7 but further polarization to +80 mV reducedP to less than 0.1. The high-conductance K+ channel in rat pancreatic islet cells is remarkably sensitive to changes in [Ca2+]i within the range 0.1 to 1 m which suggests a physiological role for this channel in regulating the membrane potential and Ca2+ influx through voltage-activated Ca2+ channels.  相似文献   

11.
Internodal cells of a brackish water charophyte,Lamprothamnium succinctum (A. Br. in Ash.) R.D.W. regulate the turgor pressure in response to changes in both the cellular and the external osmotic pressures. During turgor regulation upon hypotonic treatment, net effluxes of K+ and Cl from the vacuole, membrane depolarization, a transient increase in the electrical membrane conductance and a transient increase in concentration of cytoplasmic Ca2+ are induced. Activation of the plasmalemma Ca2+ channels and the Ca2+-controlled passive effluxes of K+ and Cl through the plasmalemma ion channels are postulated.  相似文献   

12.
Using nystatin-perforated whole-cell recording configuration, the modulatory effect of N-methyl-D-aspartate (NMDA) on γ-aminobutyric acid (GABA)-activated whole-cell currents was investigated in neurons freshly dissociated from the rat sacral dorsal commissural nucleus (SDCN). The results showed that: (i) NMDA suppressed GABA-and muscimol (Mus)-activated currents (Igaba and IMus), respectively in the Mg2+-free external solution containing 1 μmol/L glycine at a holding potential (V H ) of −40 mV in SDCN neurons. The selective NMDA receptor antagonist, D-2-amino-5-phosphonovaleric acid (APV, 100 γmol/L), inhibited the NMDA-evoked currents and blocked the NMDA-induced suppression of Igaba; (ii) when the neurons were incubated in a Ca2+-free bath or pre-loaded with a membrane-permeable Ca2+ chelator, BAPTA AM (10 μmol/L), the inhibitory effect of NMDA on IGAba disappeared. Cd2+ (10 μmol/L) or La3+ (30 μmol/L), the non-selective blockers of voltage-dependent calcium channels, did not affect the suppression of Igaba by NMDA application; (iii) the suppression of IGAba by NMDA was inhibited by KN-62, a calcium/calmodulin-dependent protein kinase II (CaMKII) inhibitor. These results indicated that the inhibition of GABA response by NMDA is Ca2+-dependent and CaMKII is involved in the process of the Ca2+-dependent inhibition.  相似文献   

13.
Kim CK  Han JS  Lee HS  Oh JY  Shigaki T  Park SH  Hirschi K 《Plant cell reports》2006,25(11):1226-1232
Previously, we made a chimeric Arabidopsis thaliana vacuolar transporter CAX2B [a variant of N-terminus truncated form of CAX2 (sCAX2) containing the “B” domain from CAX1] that has enhanced calcium (Ca2+) substrate specificity and lost the manganese (Mn2+) transport capability of sCAX2. Here, we demonstrate that potato (Solanum tuberosum L.) tubers expressing the CAX2B contain 50–65% more calcium (Ca2+) than wild-type tubers. Moreover, expression of CAX2B in potatoes did not show any significant increase of the four metals tested, particularly manganese (Mn2+). The CAX2B-expressing potatoes have normally undergone the tuber/plant/tuber cycle for three generations; the trait appeared stable through the successive generations and showed no deleterious alternations on plant growth and development. These results demonstrate the enhanced substrate specificity of CAX2B in potato. Therefore, CAX2B can be a valuable tool for Ca2+ nutrient enrichment of potatoes with reduced accumulation of undesirable metals.  相似文献   

14.
Summary The relationship between the external Ca2+ concentrations [Ca2+]0 and the electrical tolerance (breakdown) in theChara plasmalemma was investigated. When the membrane potential was negative beyond –350–400 mV (breakdown potential, BP), a marked inward current was observed, which corresponds to the so-called punch-through (H.G.L. Coster,Biophys. J. 5:669–686, 1965). The electrical tolerance of theChara plasmalemma depended highly on [Ca2+]0. Increasing [Ca2+]0 caused a more negative and decreasing it caused a more positive shift of BP. BP was at about –700 mV in 200 M La3+ solution. [Mg2+]0 depressed the membrane electrical tolerance which was supposed to be due to competition with Ca2+ at the Ca2+ binding site of the membrane. Such a depressive effect of Mg2+ was almost masked when the [Ca2+]0/[Mg2+]0 ratio was roughly beyond 2.  相似文献   

15.
K+-conductive pathways were evaluated in isolated surface and crypt colonic cells, by measuring 86Rb efflux. In crypt cells, basal K+ efflux (rate constant: 0.24 ± 0.044 min−1, span: 24 ± 1.3%) was inhibited by 30 mM TEA and 5 mM Ba2+ in an additive way, suggesting the existence of two different conductive pathways. Basal efflux was insensitive to apamin, iberiotoxin, charybdotoxin and clotrimazole. Ionomycin (5 μM) stimulated K+ efflux, increasing the rate constant to 0.65 ± 0.007 min−1 and the span to 83 ± 3.2%. Ionomycin-induced K+ efflux was inhibited by clotrimazole (IC50 of 25 ± 0.4 μM) and charybdotoxin (IC50 of 65 ± 5.0 nM) and was insensitive to TEA, Ba2+, apamin and iberiotoxin, suggesting that this conductive pathway is related to the Ca2+-activated intermediate-conductance K+ channels (IKca). Absence of extracellular Ca2+ did neither affect basal nor ionomycin-induced K+ efflux. However, intracellular Ca2+ depletion totally inhibited the ionomycin-induced K+ efflux, indicating that the activation of these K+ channels mainly depends on intracellular calcium liberation. K+ efflux was stimulated by intracellular Ca2+ with an EC50 of 1.1 ± 0.04 μM. In surface cells, K+ efflux (rate constant: 0.17 ± 0.027 min−1; span: 25 ± 3.4%) was insensitive to TEA and Ba2+. However, ionomycin induced K+ efflux with characteristics identical to that observed in crypt cells. In conclusion, both surface and crypt cells present IKCa channels but only crypt cells have TEA- and Ba2+-sensitive conductive pathways, which would determine their participation in colonic K+ secretion.  相似文献   

16.
Summary Salivary electrolyte secretion is under the control of the autonomic nervous system. In this paper we report that HSY, an epithelial cell line derived from the acinar-intercalated duct region of the human parotid gland, responds to muscarinic-cholinergic (generation of Ca2+ signal) andβ-adrenergic (generation of cAMP signal), but not toα-adrenergic (lack of Ca2+ signal), receptor stimulation. The muscarinic response was studied in detail. Carbachol (10−4 M, muscarinic agonist) or A23187 (5 μM, calcium ionophore) stimulation of HSY cells increases both86Rb (K+) influx and efflux, resulting in no change in net equilibrium86Rb content. Atropine (10−5 M, muscarinic antagonist) blocks both the carbachol-generated Ca2+ signal and carbachol-stimulated86Rb fluxes, but has no effect on either the A23187-generated Ca2+ signal or A23187-stimulated86Rb fluxes. Carbachol- and A23187-stimulated86Rb fluxes are substantially inhibited by two K+ channel blockers, quinine (0.3 mM) and scorpion venom containing charybdotoxin (33 μg/ml). The inhibition of these stimulated fluxes by another K+ channel blocker, tetraethylammonium chloride (5 mM), is less pronounced. Protein kinase C (PKC) seems to be involved in the regulation of the86Rb fluxes as 10−7 M PMA (phorbol ester, phorbol-12-myristate-13-acetate) substantially inhibits the muscarinic-stimulated86Rb efflux and influx. Because this concentration of PMA totally inhibits the carbachol-generated Ca2+ signal and only 80% of the muscarinic-stimulated86Rb influx, it seems that a portion of the carbachol-stimulated86Rb flux (i.e. that portion not inhibited by PMA) might occur independently of the Ca2+ signal. PMA fails to inhibit the A23187-stimulated86Rb fluxes, however, suggesting that PKC regulates Ca2+-sensitive K+ channel activity by regulating the Ca2+ signal, and not steps distal to this event. 4-α-Phorbol-12,13-didecanoate, a phorbol ester which fails to activate PKC, fails to inhibit either the carbachol-stimulated increase in intracellular free Ca2+, or carbachol-stimulated86Rb fluxes.  相似文献   

17.
Effect of endothelin-1 and chemically induced hypoxia on Na+−K+−Cl cotransport activity in cultured rat brain capillary endothelial cells was examined by using86Rb+ as a tracer for K+; bumetanide-sensitive K+ uptake was defined as Na+−K+−Cl cotransport activity. Endothelin-1, phorbol 12-myristate 13-acetate (PMA), or thapsigargin increased Na+−K+−Cl cotransport activity. A protein kinase C inhibitor, bisindolylmaleimide, inhibited PMA- and endothelin-1- (but not thapsigargin-) induced Na+−K+−Cl cotransport activity, indicating the presence of both protein kinase C-dependent regulatory mechanisms and protein kinase C-independent mechanisms which involve intracellular Ca2+. Oligomycin, sodium azide, or antimycin A increased Na+−K+−Cl cotransport activity by 80–200%. Oligomycin-induced Na+−K+−Cl cotransport activity was reduced by an intracellular Ca2+ chelator (BAPTA/AM) but not affected by bisindolylmaleimide, suggesting the involvement of intracellular Ca2+, and not protein kinase C, in hypoxia-induced Na+−K+−Cl cotransport activity. Portions were presented at “27th Annual Meeting, The American Society for Neurochemistry” Philadelphia, Pennsylvania, March 2–6, 1996.  相似文献   

18.
Summary Bovine aortic endothelial cells (BAECs) respond to bradykinin with an increase in cytosolic-free Ca2+ concentration, [Ca2+] i , accompanied by an increase in surface membrane K+ permeability. In this study, electrophysiological measurement of K+ current was combined with86Rb+ efflux measurements to characterize the K+ flux pathway in BAECs. Bradykinin- and Ca2+-activated K+ currents were identified and shown to be blocked by the alkylammonium compound, tetrabutylammonium chloride and by the scorpion toxin,noxiustoxin, but not by apamin or tetraethylammonium chloride. Whole-cell and single-channel current analysis suggest that the threshold for Ca2+ activation is in the range of 10 to 100nm [Ca2+] i . The whole-cell current measurement show voltage sensitivity only at the membrane potentials more positive than 0 mV where significant current decay occurs during a sustained depolarizing pulse. Another K+ current present in control conditions, an inwardly rectifying K+ current, was blocked by Ba2+ and was not affected bynoxiustoxin or tetrabutylammonium chloride. Efflux of86Rb from BAEC monolayers was stimulated by both bradykinin and ionomycin. Stimulated efflux was blocked by tetrabutyl- and tetrapentyl-ammonium chloride and bynoxiustoxin, but not by apamin or furosemide. Thus,86Rb+ efflux stimulated by bradykinin and ionomycin has the same pharmacological sensitivity as the bradykinin- and Ca2+-activated membrane currents. The results confirm that bradykinin-stimulated86Rb+ efflux occurs via Ca2+-activated K+ channels. The blocking agents identified may provide a means for interpreting the role of the Ca2+-activated K+ current in the response of BAECs to bradykinin.  相似文献   

19.
The monoclonal antibody to the β-subunit of H+/K+-ATPase (mAbHKβ) cross-reacts with a protein that acts as a molecular chaperone for the structural maturation of sarcoplasmic reticulum (SR) Ca2+-ATPase. We partially purified a mAbHKβ-reactive 65-kDa protein from Xenopus ovary. After in-gel digestion and peptide sequencing, the 65-kDa protein was identified as methionine aminopeptidase II (MetAP2). The effects of MetAP2 on SR Ca2+-ATPase expression were examined by injecting the cRNA for MetAP2 into Xenopus oocytes. Immunoprecipitation and pulse-chase experiments showed that MetAP2 was transiently associated with the nascent SR Ca2+-ATPase. Synthesis of functional SR Ca2+-ATPase was facilitated by MetAP2 and prevented by injecting an antibody specific for MetAP2. These results suggest that MetAP2 acts as a molecular chaperone for SR Ca2+-ATPase synthesis.  相似文献   

20.
We studied the effects of H2O/D2O substitution on the permeation and gating of the large conductance Ca2+-activated K+ channels inChara gymnophylla droplet membrane using the patchclamp technique. The selectivity sequence of the channel was: K+>Rb+≫Li+, Na+, Cs+ and Cl. The conductance of this channel in symmetric 100mm KCl was found to be 130 pS. The single channel conductance was decreased by 15% in D2O as compared to H2O. The blockade of channel conductance by cytosolic Ca2+ weakened in D2O as a result of a decrease in zero voltage Ca2+ binding affinity by a factor of 1.4. Voltage-dependent channel gating was affected by D2O primarily due to the change in Ca2+ binding to the channel during the activation step. The Hill coefficient for Ca2+ binding was 3 in D2O and around 1 in H2O. The values of the Ca2+ binding constant in the open channel conformation were 0.6 and 6 μm in H2O and D2O, respectively, while the binding in the closed conformation was much less affected by D2O. The H2O/D2O substitution did not produce a significant change in the slope of channel voltage dependence but caused a shift as large as 60 mV with 1mm internal Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号