首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In the present study we examined asialo GM1 (AsGM1) expression and its function in alloreactive cytotoxic T lymphocytes (CTL). We consistently found that the cytotoxic activity of bulk culture-derived allo-CTL was susceptible to the treatment of anti-AsGM1 (alpha AsGM1) plus complement. To further determine whether the expression of AsGM1 was maintained in CTL, we examined cloned T cells. The expression of AsGM1 in the T cell clones was assessed by their susceptibility to lysis by alpha AsGM1 plus complement and the reduction or abrogation of their cytotoxic activity by this treatment. It was found that, with one exception, all Lyt-2+, Thy-1+ CTL clones were AsGM1+ (seven out of eight), independent of their class specificity (class I or class II). In contrast, all Thy-1+, L3T4+ CTL (2) or helper T cell (4) clones AsGM1-. These findings suggested that there was a close association between the expression of AsGM1 and the expression of Lyt-2. The cytotoxic reaction of the anti-class I MHC CTL clones that expressed AsGM1 was blocked by alpha AsGM1 or alpha Lyt-2 antibody. The Lyt-2+, AsGM1+ anti-class II MHC CTL clone-mediated lysis was inhibited by alpha AsGM1. Addition of AsGM1 in micelle form (AsGM1-M) alone also blocked the cytotoxic reactions. Addition of other structurally similar but antigenically different glycolipids or other non-AsGM1-containing liposome preparations did not affect CTL-mediated cytotoxicity. Furthermore, adding both alpha AsGM1 and AsGM1-M together at proper doses inhibited the blocking effect (deblocking) of either alone, and other structurally similar glycolipids did not inhibit the blocking. The deblocking was specific, since AsGM1-M did not affect the blocking by alpha Lyt-2. These findings indicate that not only is AsGM1 expressed in a majority of Lyt-2+ CTL clones, but it may also be involved in the CTL- target interaction to mediate lytic reaction.  相似文献   

2.
I have compared the requirements for T helper (Th) cell function during the generation of virus-specific and alloreactive cytotoxic thymus (T)-derived lymphocyte (CTL) responses. Restimulation of vesicular stomatitis virus (VSV)-immune T cells (VSV memory CTLs) with VSV-infected stimulators resulted in the generation of class I-restricted, VSV-specific CTLs. Progression of VSV memory CTLs (Lyt-1-2+) into VSV-specific CTLs required inductive signals derived from VSV-induced, Lyt-1+2- Th cells because: (i) cultures depleted by negative selection of Lyt-1+ T cells failed to generate CTLs; (ii) titration of VSV memory CTLs into a limiting dilution (LD) microculture system depleted of Th cells generated curves which were not consistent with a single limiting cell type; (iii) LD analysis of VSV memory CTLs did produce single-hit curves in the presence of Lyt-1+2- T cells sensitized against VSV; and (iv) monoclonal anti-L3T4 antibody completely abrogated CTL generation against VSV. Similar results were also obtained with Sendai virus (SV), a member of the paramyxovirus family. The notion that a class II-restricted, L3T4+ Th cell plays an obligatory role in the generation of CTLs against these viruses is also supported by the observation that purified T cell lymphoblasts (class II antigen negative) failed to function as antigen-presenting cells for CTL responses against VSV and SV. T cell lymphoblasts were efficiently lysed by class I-restricted, anti-VSV and -SV CTLs, indicating that activated T cells expressed the appropriate viral peptides for CTL recognition. Furthermore, heterogeneity in the VSV-induced Th cell population was detected by LD analysis, suggesting that at least two types of Th cells were required for the generation of an anti-VSV CTL response. VSV-induced Th cell function could not simply be replaced by exogenous IL-2 because this lymphokine induced cytotoxic cells that had the characteristics of lymphokine-activated killer (LAK) cells and not anti-viral CTLs. In contrast, CTL responses against allogeneic determinants could not be completely blocked with antibodies against L3T4 and depletion of L3T4+ cells did not prevent the generation of alloreactive CTLs in cultures stimulated with allogeneic spleen cells or activated T cell lymphoblasts. Thus, these studies demonstrate an obligatory requirement for an L3T4-dependent Th cell pathway for CTL responses against viruses such as VSV and SV; whereas, CTL responses against allogeneic determinants can utilize an L3T4-independent pathway.  相似文献   

3.
The light density fraction (A + B, i.e., remaining above the 26% concentration in the discontinuous BSA gradient) of BCF1 (H-2b X H-2k) mouse bone marrow contains cells that after injection into irradiated syngeneic recipients give rise to autoreactive Lyt-2+, Thy-1+ CTL. After injection of unfractionated bone marrow cells, the levels of these CTL were low or undetectable, suggesting that either the precursors were highly enriched in the A + B fraction or that bone marrow cells with higher density have a suppressive function. The specificity of the killing was not directed toward all the available class I MHC antigens: only targets carrying H-2Kb-coded determinants were killed. There was no overlapping between the autoreactive and alloreactive precursors: cells from the A + B fraction could not respond to an alloantigen in vitro, not even in the presence of an interleukin 2-containing supernatant, and the autoreactive CTL activated in vivo could not kill allogeneic targets. The induction of the autoreactive CTL did not require the presence of the appropriate MHC antigen in the maturation environment, thus differing from the activation of mature T cells. The observed CTL specificity, together with the previous findings showing that prethymic T cells are locating in the same BSA fraction as the precursors for these autoreactive cells, support the idea that the prethymic T cell repertoire is, at least partially, directed to recognize self-MHC antigens.  相似文献   

4.
The goal of the present study was to evaluate the relationship among function, Lyt phenotype, and MHC recognition specificity in primary allospecific T cell populations. By using Lyt-2+ and L3T4+ T cells obtained from the same responder populations, we assessed the ability of T cells of each phenotype to generate cytotoxic effector cells (CTL) and IL 2-secreting helper T cells in response to either class I or class II MHC allodeterminants. It was found that a discordance between Lyt phenotype and MHC recognition specificity does exist in primary allospecific T cells, but only in one T cell subpopulation with limited functional potential: namely, Lyt-2+ T cells with cytotoxic, but not helper, function that recognize class II MHC alloantigens. Target cell lysis by these Lyt-2+ class II-allospecific CTL was inhibited by anti-Ia monoclonal antibodies (mAb), but not anti-Lyt-2 mAb, indicating that they recognized class II MHC determinants as their "restriction" specificity and not as their "nominal" specificity even though they were Lyt-2+. A second allospecific T cell subset with limited functional potential was also identified but whose Lyt phenotype and MHC restriction specificity were not discordant: namely, an L3T4+ T cell subset with helper, but not cytotoxic, function specific for class I MHC allodeterminants presented in the context of self-Ia. Thus, the present study demonstrates that primary allospecific T cell populations contain phenotypically identical subpopulations of helper and effector cells that express fundamentally different MHC recognition specificities. Because the recognition specificities expressed by mature T cells reflect the selection pressures they encountered during their differentiation into functional competence, these findings suggest that functionally distinct but phenotypically identical T cell subsets may be selected independently of one another during ontogeny. Thus, the existence of Lyt-2+ CTL specific for class II allodeterminants can be explained by the hypothesis that the association of Lyt phenotype with MHC recognition specificity results from the process of thymic selection that these Lyt-2+ effector cells avoid.  相似文献   

5.
Eleven long-term cytotoxic T lymphocyte (CTL) clones derived from C57BL/10 T cells sensitized in vivo and in vitro with trinitrobenzene sulfonate- (TNBS) treated syngeneic cells were all restricted to the K end of H-2b. The fine specificity of these CTL clones was analyzed by using H-2Kbm mutant target cells and H-2Kb-specific monoclonal antibodies (mAb). Seven distinct patterns of reactivity of the T cell clones could be observed with the use of six H-2Kbm mutant target cells. Further heterogeneity could be detected in terms of the ability of anti-Lyt-2 mAb to inhibit CTL activity. Cross-reactivity between H-2Kb + TNP and H-2Kbm + TNP was observed for all clones tested for bm5 and bm6, but less frequently for bm3 (8/11), bm8 (7/10), bm4 (4/11), and bm1 (3/11). It was further observed that amino acid substitutions located in the first domain only (one clone), or in the second domain only (six clones), or in either the first or the second domain (three clones) of the H-2Kb molecule could affect target cell recognition by a given T cell clone. the latter type of reactivity suggested that some clones recognized "conformational" determinants of the H-2 molecule, or that amino acid substitutions in one domain might influence the structure of the next domain. One H-2Kb + TNP-reactive clone exhibited a heteroclitic behavior with decreasing avidities for target cells expressing H-2Kbm8 + TNP, H-2Kb + TNP, and H-2Kbm8, which further extends the various patterns of T cell cross-reactions observed within a given class of MHC products. The use of H-2Kb-specific mAb in blocking studies as an attempt to define further the H-2Kb epitopes recognized by CTL clones indicated that: a) TNBS treatment may affect the antigenicity of the H-2Kb molecule as assessed by some mAb; and b) that the T cell clone-target cell interaction may or may not be inhibited by a given mAb, depending on structural variations of the H-2Kb molecule (use of H-2Kbm mutants) that do not affect the interaction itself. These results indicate that this type of analysis does not permit correlation of serologic- and T cell-defined epitopes.  相似文献   

6.
Previous analyses of the inhibitory effects of anti-Lyt-2 monoclonal antibodies (mAb) on cytolytic activity suggested that Lyt-2/3 antigens expressed on the surface of murine cytolytic T lymphocytes (CTL) are involved in antigen recognition. In the present study, we investigated the effects of anti-Lyt-2 mAb (in the absence of complement) on the functional activities of H-2K/D-specific Lyt-2+ CTL clones that proliferate to antigenic stimulation in the absence of helper T cells or added interleukin 2 (IL 2) and secrete lymphokines. For those clones that were inhibited in cytolysis by anti-Lyt-2 mAb, a parallel inhibition of antigen-dependent proliferation and lymphokine secretion (interferon, macrophage-activating factor) was observed. Inhibition of proliferation or lymphokine secretion could be overcome by the addition of IL 2 or lectin, respectively. Collectively, these results would strongly suggest that anti-Lyt-2 mAb were inhibiting CTL antigen recognition. Not all CTL clones, however, were inhibited in cytolysis by anti-Lyt-2 mAb, in which case proliferation and lymphokine secretion were similarly unaffected. This heterogeneity of Lyt-2+ CTL clones in their susceptibility to inhibition of cytolytic activity, proliferation, and lymphokine secretion by anti-Lyt-2 mAb is discussed in the context of a model proposing that Lyt-2/3 molecules function to stabilize the interaction between CTL receptors and the corresponding target/stimulating cell antigens. Such a stabilization may be required by CTL possessing few and/or low affinity receptors.  相似文献   

7.
The influence that the isotype of Ag-specific antibody has on the induction of contact hypersensitivity (CS) has been investigated. Injection (i.v.) of mice with haptenated peritoneal exudate cells (PEC) pretreated with anti-hapten mAb of the IgG2a and IgG2b isotypes results in the activation of Ag-specific afferent acting Ts cells (Ts-aff). These suppressor cells are not generated when animals are injected with anti-hapten antibodies of other isotypes. The Ts-aff cells function to inhibit the generation of CS responses when injected into naive animals. Suppression is due to the induction of both Lyt-1+,2- I-J+ and Lyt-1-,2+ I-J+ T cells, both of which adhere to the lectin Vicia villosa. Attachment of both TNP and 4-ethoxymethylene-2-phenyloxazolone haptens to the same PEC, followed by treatment with an IgG2a anti-TNP antibody, generates Ts-aff cells specific for both 4-ethoxymethylene-2-phenyloxazolone and TNP. The MHC haplotype of the PEC is irrelevant, as allogeneic PEC will also induce Ts-aff cells when injected by using an identical protocol. Ts-aff cells cannot be generated in B cell-depleted mice, nor does the Ts-aff cells generated in normal mice suppress CS responses in B cell-depleted mice. These results show that Ag-antibody complexes bound on the surface of a PEC can induce potent afferent suppression in vivo. A possible general role for antibody isotypes in directing regulatory activities is discussed.  相似文献   

8.
The goal of this study was to assess and compare the allorecognition requirements for eliciting Lyt-2+ helper and effector functions from primary T cell populations. By using interleukin 2 (IL 2) secretion as a measure of T helper (Th) function, and cytolytic T lymphocyte (CTL) generation as a measure of effector function, this study compared the responses of Lyt-2+ T cells from wild-type B6 mice against a series of H-2Kb mutant determinants. Although all Kbm determinants stimulated B6 Lyt-2+ T cells to become cytolytic effector cells, the various Kbm determinants differed dramatically in their ability to stimulate Lyt-2+ T cells to function as IL 2-secreting helper cells. For example, in contrast to Kbm1 determinants that stimulated both helper and effector functions, Kbm6 determinants only stimulated B6 Lyt-2+ T cells to become cytolytic and failed to stimulate them to secrete IL 2. The distinct functional responses of Lyt-2+ T cells to Kbm6 determinants was documented by precursor frequency determinations, and was not due to an inability of the Kbm6 molecule to stimulate Lyt-2+ Th cells to secrete IL 2. Rather, it was the specific recognition and response of Lyt-2+ T cells to novel mutant epitopes on the Kbm6 molecule that was defective, such that anti-Kbm6 Lyt-2+ T cells only functioned as CTL effectors and did not function as IL 2-secreting Th cells. The failure of Lyt-2+ anti-Kbm6 T cells to function as IL 2-secreting Th cells was a characteristic of all Lyt-2+ T cell populations examined in which the response to novel mutant epitopes could be distinguished from the response to other epitopes expressed on the Kbm6 molecule. The absence of significant numbers of anti-Kbm6 Th cells in Lyt-2+ T cell populations was examined for its functional consequences on anti-Kbm6 CTL responsiveness. It was found that primary anti-Kbm6 CTL responses could be readily generated in vitro, but unlike responses to most class I alloantigens that can be mediated by Lyt-2+ Th cells, anti-Kbm6 CTL responses were strictly dependent upon self-Ia-restricted L3T4+ Th cells. Because the restriction specificity of L3T4+ Th cells is determined by the thymus, in which their precursors had differentiated, anti-Kbm6 CTL responsiveness, unlike responsiveness to most class I alloantigens, was significantly influenced by the Ia phenotype of the thymus in which the responder cells had differentiated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The i.v. injection of parental T cells into F1 hybrid mice can result in a graft-vs-host (GVH)-induced immune deficiency that is Ag nonspecific and of long duration. The effect of the GVH reaction (GVHR) on the host's immune system depends on the class of F1 MHC Ag recognized by the donor cells. To determine the role of different subsets of donor-derived T cells in the induction of GVHR, donor spleen cells were negatively selected by anti-T cell mAb and C, and the cells were injected into F1 mice that differed from the donor by both class I and II MHC Ag or by class I or class II MHC only. The induction of GVHR across class I + II differences was found to require both L3T4+ and Lyt-2+ parental cells. Induction of GVHR across a class II difference required only L3T4+ parental T cells in the combination tested [B6-into-(B6 x bm12)F1]. In contrast, B6 Lyt-2+ cells were sufficient to induce GVHR across a class I difference in (B6 x bm1)F1 recipients. In addition, a direct correlation was observed between the cell types required for GVH induction and the parental T cell phenotypes detected in the spleens of the GVH mice. The number of parental cells detected in the unirradiated F1 hosts was dependent upon the H-2 differences involved in the GVHR. Induction of a class I + class II GVHR resulted in abrogation of both TNP-self and allogeneic CTL responses. In contrast, induction of a class II GVHR resulted in only a selective loss of TNP-self but not of allogeneic CTL function. Unexpectedly, the induction of a class I GVHR also resulted in the selective loss of the TNP-self CTL response. Thus, these class I and class II examples of GVH both result in the selective abrogation of L3T4+ Th cell function. The data are discussed in terms of respective roles of killer cells and/or suppressor cells in the induction of host immune deficiency by a GVHR, and of the selective deficiency in host Th cell function induced by different classes of GVHR.  相似文献   

10.
The inoculation of B6D2F1 mice with T lymphocytes from the C57BL/6 parental strain induces an "immunosuppressive" graft-vs-host reaction (B6 GVH), whereas inoculation of T cells from the other, DBA/2 parental strain induces an "immunostimulatory" GVH reaction and a lupus-like disease (DBA GVH). The present study compares cytotoxic T lymphocyte (CTL) function in the spleens of these GVH mice as well as differences in the donor inoculum that could account for these different types of GVH. We observed that the B6 GVH induces an immunodeficiency that encompasses CTL precursors (and possibly T helper cells) and results in suppressor cells that abrogate responses to both trinitrophenyl (TNP)-modified self and third party alloantigens. In contrast, the DBA GVH induces only a T helper cell immunodeficiency and results in suppressor cells selective for class II restricted L3T4+ T helper cells. Chimeric T cells were detected in both types of GVH. In the B6 GVH both L3T4+ and Lyt-2+ donor cells were observed, although Lyt-2+ cells predominated. In the DBA GVH, donor T cells were almost exclusively of the L3T4+ phenotype. The lack of appreciable donor Lyt-2+ cells in the DBA GVH can be explained by a defect in the DBA donor inoculum manifested by a naturally occurring two-fold reduction in Lyt-2+ cell numbers as well as a nine-fold reduction in CTL precursors with anti-F1 specificity. T cells in the DBA inoculum, therefore, are predominantly L3T4+. A similar defect induced in B6 donor cells by anti-Lyt2 antibody and complement not only converted the suppressive GVH to a stimulatory GVH, as measured by anti-DNA antibodies, but also resulted in a T cell immune deficiency characteristic of the DBA GVH, i.e., a selective loss of the TNP-self CTL response. Thus the presence or absence of adequate numbers of functioning Lyt-2+ cells in the donor inoculum is correlated with the development of either a suppressive or stimulatory GVH, respectively. That donor Lyt-2+ cells mediate a suppressive GVH through cytolytic mechanisms is evidenced by greater than 70% reduction in B6 GVH spleen cell numbers and readily demonstrable anti-F1 CTL activity by these spleen cells despite an inability to generate anti-allogeneic or anti-TNP self CTL activity even in the presence of added T helper factors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Endothelial cell (EC)-selective alloreactive CTL may mediate alloimmune vascular injury. In the present study, EC-selective CTL were generated in cocultures of purified human CD8+ T cells with allogeneic EC and were compared with conventional CTL against corresponding B lymphoblastoid cells (BLC). EC caused activation and expansion of memory but not naive CD8+ T cells, which differentiated into EC-selective CTL that retained high surface expression of CD69, CD25, and CD62L and displayed low intracellular perforin content. In contrast, BLC-stimulated CTL could be generated from naive or memory CD8+ T cells and showed a more mature phenotype (low CD69, CD25, and CD62L with higher levels of perforin). The expansion of alloreactive T cells by EC stimulation was 5- to 20-fold less effective than in corresponding BLC-stimulated cultures, accounting for a reduction in the assayable cytotoxicity of individual microcultures. In these IL-2-supplemented cocultures, no effect on CTL generation or phenotype was observed by mAb blocking of costimulation provided by LFA-3, ICAM-1, or CD40, by addition of comitogenic anti-CD28 mAb, or by preactivation of EC with CD40 ligand. Cyclosporine inhibited CTL expansion and cytotoxicity similarly in both EC- and BLC-stimulated cultures but did not affect the phenotype of those CTL that did emerge. This study extends the characterization of endothelium as an immunoregulatory cell type distinct from conventional APC and may explain why graft rejection within the arterial intima, an anatomic compartment in which EC may be the primary type of APC, is separable from rejection in the graft parenchyma.  相似文献   

12.
Alloreactive cytotoxic T lymphocytes (CTL) distinct from virus-specific CTL and activated natural killer (NK) cells were generated during acute lymphocytic choriomeningitis virus (LCMV) infection of C57BL/6J mice. The alloreactive CTL shared similar antigenic markers (Thy-1.2+, Lyt-2.2+, and asialo GM1-) with the virus-specific CTL that appeared at the same time 7 days postinfection, but had different target specificities. These alloreactive CTL lysed allogeneic but not syngeneic or xenogeneic targets. These were distinct from activated NK cells, which lysed all target cell types, peaked 3 days postinfection, and had a phenotype of asialo GM1+, Thy-1 +/-, Lyt-2.2-. Cold target competition studies indicated that there were several subsets of alloreactive T cells with distinct specificities, and that these alloreactive T cells were not subsets of the virus-specific T cells. Similar types of alloreactive CTL were induced at much lower levels in C3H/St mice. This may indicate that the generation of this "aberrant" T cell activity is under genetic control. Hence, the LCMV infection of C57BL/6J mice induces several cytotoxic effector populations including alloreactive CTL, activated NK cells, and virus-specific CTL. Virus infections therefore have the ability not only to polyclonally stimulate B cells, as previously described, but also to stimulate CTL.  相似文献   

13.
The cytotoxic activity of alloreactive cytotoxic T lymphocytes (CTL) was maintained and augmented by transferring cells from a 5-day mixed lymphocyte culture MLC into a host culture (HC) containing indomethacin, freshly explanted normal spleen cells, and peritoneal cells which were syngeneic to the MLC cells. The MLC cells used in the transfer experiments were generated by culturing untreated H-2b splenic responders with irradiated H-2d stimulators, or were generated by culturing Lyt-2-depleted H-2b splenic responders with irradiated H-2d stimulators. The allo-CTL were found to be derived from the donor MLC (first culture) when unfractionated MLC cells were transferred into a host (second) culture and incubated for 5 days. In contrast, the allo-CTL were derived from host culture cells when Lyt-2-depleted MLC cells were transferred and the combined cultures incubated for 5 days. In the former case, the augmentation of MLC-derived cytotoxicity did not result from nonspecific expansion of all donor T cells; instead it was mediated by lymphokine(s), distinct from IL-2, produced by helper T cells generated in host culture, which appeared to selectively expand the antigen-specific CTL or to increase the cytotoxic activity of these CTL. The helper T cells were Thy-1+, L3T4+, and Lyt-2-. These findings indicate that antigen-nonspecific help was provided by helper cells or helper factors (lymphokines) generated in the host culture, which maintained and augmented the cytotoxic activity of the fully generated allo-CTL. This helper effect was also seen in the induction of primary allo-CTL responses which could be generated with fewer stimulating cells and with a stronger cytotoxic response at different R/S ratios tested. The generation of allo-CTL in second culture following transfer of Lyt-2-depleted MLC cells to host cultures appears to have involved antigen carryover from the MLC; however, antigen carryover alone was not sufficient. It appears that in the absence of Lyt-2+ suppressor T cells, antigen-specific help might be generated in donor cultures (Lyt-2-depleted MLC) which promoted or recruited the generation of antigen-specific CTL in host culture.  相似文献   

14.
Monoclonal antibodies (mAb) directed at the T cell receptor complex (TcR) on cloned T cells have generally been identified by their ability to inhibit the clone's antigen-specific function. Because such inhibition is highly dependent on antibody concentration and affinity, detection of anti-clonotypic antibodies to murine alloreactive T cells has been very difficult. In this report, an alternative method is described on the basis of the ability of antibodies specific for the TcR complex to activate T cells in an antigen-independent manner. The assay is based upon the observation that soluble antibodies to human T3 promote lysis of irrelevant, Fc receptor-positive targets by a human CTL line. By using this approach, an anti-TcR mAb has been identified among a panel of murine mAb generated against an alloreactive CTL clone. Induction of lysis by soluble anti-TcR mAb has been shown to require both the expression of Fc receptors on the target cell and conjugate formation between the effector and the target cell. This assay provides a screening procedure that is much more sensitive than inhibition of function, and it preferentially detects antibodies specific for cell surface molecules involved in T cell activation.  相似文献   

15.
L-ornithine was found to differentially affect the induction of allospecific cytotoxic T lymphocytes (CTL) and suppressor T cells (Ts). At a concentration of 10 mM, ornithine inhibited the development of CTL in a mixed-leukocyte culture (MLC). This same population of cells suppressed the generation of CTL when irradiated and cocultured with fresh syngeneic lymphocytes and alloantigen. Suppression was mediated by Lyt-1-2+ cells and was antigen specific. Suppression was abrogated when IL-2 (10 U/ml) was added to the cocultures, but could not be reversed by increasing the antigen dose. Ornithine was not toxic to CTL precursors but rather arrested their development. Cells from MLC plus ornithine developed CTL activity within 2 days of transfer to secondary cultures in the absence of ornithine. Development of CTL effector cells (CTLe) was augmented by but did not require exogenous IL-2. Generation of CTLe from the MLC plus ornithine population was radiation sensitive and could be inhibited by reexposure to ornithine, even in the presence of IL-2. Thus, Lyt-1-2+ T cells allostimulated in vitro in MLC plus ornithine and lacking CTL activity convey radiation-resistant, antigen-specific suppression.  相似文献   

16.
Hybridoma H129 .19 was derived by fusion between spleen cells of a Lou / Ws1 rat immunized with an Lyt-1+,2- anti-I-Ak cytolytic T lymphocyte (CTL) clone and the nonsecreting myeloma X63-Ag8.653. The monoclonal antibody (mAb) H129 .19 (IgG2a, kappa) was selected for its capacity to inhibit the lytic potential of the immunizing clone. H129 .19 identified a monomorphic determinant on a 55 m.w. murine T cell differentiation antigen, which appeared to be homologous to the human T4 molecule in that: 1) H129 .19 reacted with 80% adult thymocytes, with a subset of splenic T cells, and with the interleukin 2 (IL 2)-producing EL4 thymoma; 2) The mAb bound to and inhibited the IL 2 production and the proliferation of various allo- or soluble antigen-reactive T cell clones that recognized restriction or activating determinants on the I-A or I-E molecules, respectively; 3) H129 .19 did not inhibit the proliferation and/or cytolysis of Lyt-2,3+ T cells specific for class I MHC antigen; and 4) Among six anti-Iak CTL clones examined in this study, the mAb H129 .19 reacted with two I-Ak-specific, Lyt-2,3- clones on which it exerted strong cytolysis inhibiting effect at the effector cell level. By contrast, two other anti-I-Ak and two anti-I-Ek CTL clones were found to express the Lyt-2,3+,T4- cell surface phenotype. The cytolytic potential of the latter clones was not inhibited by anti-Lyt-2,3 mAb. These studies strongly suggest that the mouse T4 molecule facilitates the recognition of class II MHC antigen by most but not all T cells.  相似文献   

17.
A new T cell molecule defined by the mAb 143-4-2 has been identified that is involved in T cell activation. The expression of the 143-4-2-defined epitope is linked to the previously characterized Ly-6 locus and restricted to bone marrow cells and to a subset of peripheral Lyt-2+ cells. In comparison to other anti-Ly-6.2 mAb, the 143-4-2 mAb appears to be directed at an allogeneic determinant of the Ly-6.2C molecule. The anti-Ly-6.2C antibody can promote the lysis of antigen-non-bearing target cells by alloreactive CTL clones, and in the presence of cofactors (PMA or IL 2) induces a subset of Lyt-2+ cells to proliferate, perhaps through an autocrine pathway. Although the antibody described has antigen-like effects as described for anti-TcR complex reagents, studies performed with a recently derived anti-murine T3 mAb suggest that the Ly-6.2C molecule is not associated on the cell surface with components of the TcR complex. Nevertheless, cell surface expression of the TcR complex is required for optimal triggering of T cells via the Ly-6.2C molecule. Because Ly-6.2C determinants are expressed in bone marrow and not in the thymus, the possibility is considered that expression of this molecule identifies a distinct subset of extrathymically derived T cells.  相似文献   

18.
B cell stimulatory factor 1 (BSF-1) (IL-4) was shown to synergize with phorbol esters or with monoclonal anti-TCR antibody in stimulation of the development of CTL from small resting murine T cells. IL-2 also synergized with PMA in such differentiation but was less effective than BSF-1. The combination of these two lymphokines with PMA had the most potent effect on the development of CTL. BSF-1 plus PMA stimulated a significant increase in the intracellular content of N-benzyloxycarbonyl-L-lysine thiobenzylester esterase, a granule-associated biochemical marker, whereas IL-2 plus PMA was only marginally effective. Depletion of L3T4+ cells did not result in the abrogation of these effects. Lyt-2+ T cells that were incubated for 72 h with BSF-1 plus PMA accumulated N-benzyloxycarbonyl-L-lysine thiobenzylester esterase and secreted this intragranular marker after interaction with immobilized anti-T cell receptor mAb. These BSF-1/PMA-stimulated Lyt-2+, L3T4- T cells were also able to kill FcR positive target cells in a retargeting assay with a mAb to murine T3 Ag, providing evidence that BSF-1 plus PMA acted directly on precursors of cytotoxic T cells.  相似文献   

19.
The expression of Lyt-2 on T lymphocytes has been postulated to correlate closely with restriction by, or alloreactivity to, class I MHC gene products, whereas I region-restricted or alloreactive populations appear to be associated with Lyt-1 and L3T4 expression. However, exceptions to this axiom among alloreactive T cells have been shown to exist. In this report we describe a clonal population of influenza virus-specific T lymphocytes that bears the Lyt-2+, L3T4- phenotype. Notably, this clone is restricted in influenza virus recognition by class II MHC molecules and is cytolytic for virus-infected target cells expressing the appropriate class II molecules. Antibody directed to the Lyt-2 molecule does not inhibit cytolysis.  相似文献   

20.
The role of antigen-specific helper T cells in augmenting the in vivo development of delayed-type hypersensitivity (DTH) responses was investigated. C3H/HeN mice were inoculated i.p. with vaccinia virus to generate virus-reactive helper T cell activity. These vaccinia virus-primed or unprimed mice were subsequently immunized subcutaneously (s.c.) with either trinitrophenyl (TNP)-modified syngeneic spleen cells (TNP-self), vaccinia virus-infected spleen cells (virus-self), or cells modified with TNP subsequent to virus infection (virus-self-TNP). Seven days later, these mice were tested for anti-TNP DTH responses either by challenging them directly with TNP-self into footpads or by utilizing a local adoptive transfer system. The results demonstrated that vaccinia virus-primed mice failed to generate significant anti-TNP DTH responses when s.c. immunization was provided by either virus-self or TNP-self alone. In contrast, vaccinia virus-primed mice, but not unprimed mice, could generate augmented anti-TNP DTH responses when immunized with virus-self-TNP. Anti-vaccinia virus-reactive helper activity was successfully transferred into 600 R x-irradiated unprimed syngeneic mice by injecting i.v. spleen cells from virus-primed mice. These helper T cells were found to be antigen specific and were mediated by Thy-1+, Lyt-1+2- cells. DTH effector cells enhanced by helper T cells were also antigen specific and were of the Thy-1+, Lyt-1+2- phenotype. Furthermore, vaccinia virus-reactive helper T cell activity could be applied to augment the induction of tumor-specific DTH responses by immunization with vaccinia virus-infected syngeneic X5563 tumor cells. T-T cell interaction between Lyt-1+ helper T cells and Lyt-1+ DTH effector T cells is discussed in the light of the augmenting mechanism of in vivo anti-tumor-specific immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号