首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Endostatin is a potent antiangiogenic protein derived from the noncollagenous domain 1 (NC1) of collagen XVIII. The mechanism by which endostatin exerts its antiangiogenic effect is still incompletely understood. It has been shown that the 27 amino acid N‐terminal fragment of murine endostatin has antitumor, antimigration, and antipermeability activities comparable to the full soluble protein. To understand how this peptide can exert such elaborate function, we performed structural analysis using molecular dynamics to evaluate the behavior of this fragment in aqueous environment. Here, we show that the N‐terminal peptide of murine endostatin is able to assume a well‐defined structure, folding into a zinc‐dependent β‐hairpin conformation. Analyzing the folding mechanism, we were able to understand why the N‐terminal peptide of human endostatin with the same length failed to acquire a stable conformation. Conversely, we were able to predict the successful folding of the R4Q mutant and of a shorter form of the human peptide with 25 residues. Finally, we show that the β‐hairpin conformation assumed by the zinc‐bound peptide of murine endostatin has a high structural similarity with fragments of another family of angiogenesis inhibitors: the integrin‐binding portion of the NC1 domain of collagen IV. Indeed, our docking simulations show that arresten, canstatin, and the endostatin peptide bind to the same spot of αVβ3 integrin, suggesting similar interactions via a common binding site on this receptor. Proteins 2011;. © 2011 Wiley‐Liss, Inc.  相似文献   

2.
Chemotherapy combined with antiangiogenic therapy is more effective than chemotherapy alone. The aim of this study was to investigate whether endostatin, a potent anti-angiogenic agent, could enhance the efficacy of paclitaxel to combat breast cancer. An expression plasmid encoding mouse endostatin (End-pcDNA3.1) was constructed, which produced intense expression of endostatin and inhibited angiogenesis in the chorioallantoic membrane assay. 4T1 breast tumors were established in BALB/c mice by subcutaneous injection of 1 × 105 4T1 cells. The End-pcDNA3.1 plasmid diluted in the transfection reagent FuGENETM was injected into the tumors (around 100 mm2), and paclitaxel was injected i.p. into the mice. Endostatin gene therapy synergized with paclitaxel in suppressing the growth of 4T1 tumors and their metastasis to the lung and liver. Both endostatin and paclitaxel inhibited tumor angiogenesis and induced cell apoptosis. Despite the finding that endostatin was superior to paclitaxel at inhibiting tumor angiogenesis, paclitaxel was nevertheless more effective at inducing tumor apoptosis. The combination of paclitaxel and endostatin was more effective in suppressing tumor growth, metastases, angiogenesis, and inducing apoptosis than the respective monotherapies. The combinational therapy with endostatin and paclitaxel warrants future investigation as a therapeutic strategy to combat breast cancer.  相似文献   

3.
We investigated the ability of extracellular matrix (ECM) proteins to modulate the response of endothelial cells to both promoters and inhibitors of angiogenesis. Using human dermal microvascular endothelial cells (HDMEC), we found that cells demonstrated different adhesive properties and proliferative responses to the growth factor VEGF depending upon which ECM protein with which they were in contact, with fibronectin having the most impact on VEGF-induced HDMEC proliferation and survival. More importantly, we observed that ECM could modulate the ability of the angiogenic inhibitor endostatin to prevent endothelial cell proliferation, survival and migration. We observed that growth on vitronectin or fibronectin impaired the ability of endostatin to inhibit VEGF-induced HDMEC proliferation to the greatest extent as determined by BrdU incorporation. We found that, following growth on collagen I or collagen IV, endostatin only inhibited VEGF-induced HDMEC proliferation at the highest dose tested (2500 ng/ml). In a similar manner, we observed that growth on ECM proteins modulated the ability of endostatin to induce endothelial cell apoptosis, with growth on collagen I, fibronectin and collagen IV impairing endostatin-induced apoptosis. Interestingly, endostatin inhibited VEGF-induced HDMEC migration following culture on collagen I, collagen IV and laminin, while migration was not inhibited by endostatin following HDMEC culture on other matrices including vitronectin, fibronectin and tenascin-C. These results suggest that different matrix proteins may affect different mechanisms of endostatin inhibition of angiogenesis. Taken together, our results suggest that the ECM may have a profound impact on the ability of angiostatic molecules such as endostatin to inhibit angiogenesis and thus may have impact on the clinical efficacy of such inhibitors.  相似文献   

4.
Aim of the study was to get a deeper insight in the mechanisms regulating avascularity of cartilaginious tissues. In the center of our interest was the expression of the anti-angiogenic fragment of collagen XVIII and its potency to inhibit angiogenesis. We observed a strong endostatin/collagen XVIII production in articular and fibrocartilage and an inhibitory potency concerning the VEGF-signalling pathway. INTRODUCTION: Cartilaginous tissue is mainly avascular and shows a limited intrinsic capacity for healing. Aim of this study was to investigate the expression of the antiangiogenic peptide endostatin/collagen XVIII in cartilage and fibrocartilage. RESULTS: In fetal epiphyseal cartilage of humans high endostatin/collagen XVIII levels could be detected by ELISA whereas significantly lower levels were found in articular cartilage of adults. In the fibrocartilaginous tissue of the menisci, there was no significant difference in the endostatin/collagen XVIII concentrations between samples of fetuses and adults. But in the menisci of adults, endostatin/collagen XVIII concentrations were higher in the internal avascular two thirds of the meniscus whereas in the fetal menisci higher endostatin/collagen XVIII concentrations were found in the external third. Endostatin/collagen XVIII immunostaining of rat articular cartilage shows that endostatin/collagen XVIII downregulation starts soon after birth. In fetal cartilage and fibrocartilage of rats and humans, endostatin/collagen XVIII could be immunostained in the extracellular matrix and in the pericellular matrix of endothelial cells, fibrochondrocytes and chondrocytes. In adult cells, weak endostatin/collagen XVIII immunostaining was restricted to the pericellular matrix of fibrochondrocytes and chondrocytes. The detection of endostatin/collagen XVIII could be verified by in situ hybridization. Chondrocytes in vitro released measurable amounts of endostatin/collagen XVIII into culture supernatants. Stimulation of chondrocytes with EGF, as an example of a growth factor, or dexamethasone had no influence on endostatin/collagen XVIII expression. Endostatin inhibited VEGF-induced phosphorylation of MAPK in chondrocytes. CONCLUSIONS: The spatial and temporal expression of endostatin/collagen XVIII in cartilaginous tissue and its potency regarding inactivation of VEGF signalling suggests that this antiangiogenic factor is important not only for the development but also for the maintenance of avascular zones in cartilage and fibrocartilage. EXPERIMENTAL PROCEDURES: We analyzed the spatial and temporal expression of endostatin/collagen XVIII--an endogenous angiogenesis inhibiting factor--in cartilage and fibrocartilage of humans and rats by immunohistochemical and biochemical (ELISA) methods and by in situ hybridization. To elucidate possible factors responsible for the induction or suppression of endostatin/collagen XVIII in cartilaginous tissues, chondrocytes (cell line C28/I2) were exposed to EGF and dexamethason. To study the possible interaction of endostatin/collagen XVIII with angiogenic factors, the immortalized human chondrocytes (C28/I2) have been incubated with VEGF and the phosphorylation of the MAPK Erk 1/2 (extracellular-regulated kinases), a known signal transduction pathway for VEGF has been determined under the influence of endostatin.  相似文献   

5.
Isolation and characterization of the circulating form of human endostatin   总被引:1,自引:0,他引:1  
Recently, fragments of extracellular proteins, including endostatin, were defined as a novel group of angiogenesis inhibitors. In this study, human plasma equivalent hemofiltrate was used as a source for the purification of high molecular weight peptides (10–20 kDa), and the isolation and identification of circulating human endostatin are described. The purification of this C-terminal fragment of collagen α1(XVIII) was guided by MALDI-MS and the exact molecular mass determined by ESI-MS was found to be 18 494 Da. N-terminal sequencing revealed the identity of this putative angiogenesis inhibitor and its close relation to mouse endostatin. The cysteine residues 1–3 and 2–4 in the molecule are linked by disulfide bridges. In vitro biological characterization of the native protein demonstrated no anti-proliferative activity on different endothelial cell types. These data indicate that human endostatin, which is a putative angiogenesis inhibitor, is present in the circulation.  相似文献   

6.
Tumor angiogenesis is believed to result from an imbalance of pro- and anti-angiogenic factors, some of which are candidates for targeted therapy. Such therapy has raised hopes for patients with undifferentiated thyroid carcinomas, who are facing a grave prognosis with a survival of only months. In this study, in vivo growth of xenografted human thyroid carcinomas unexpectedly responded quite differently to neutralizing anti-vascular endothelial growth factor (VEGF) antibody. In particular, lasting inhibition as well as accelerated growth occurred after treatment. Consequently, a panel of anti-angiogenic factors was addressed in a representative sample of thyroid carcinoma lines. VEGF, fibroblast growth factor (FGF-2), and endostatin were demonstrated by Western blotting and EIA, whereas PDGF-A, PDGF-B, and IL-6 were negative. Quantification of VEGF, FGF-2, and endostatin revealed a wide range of concentrations from 500 to 4,200 pg/ml VEGF, 5 to 60 pg/ml FGF-2, and 50 to 300 pg/ml endostatin, not related to a particular histologic thyroid carcinoma background. Angiostatin (kringles 1-3) was detected in all, but one of the cell lines. Finally, aaATIII was confirmed in FTC133 cells. These data highlight the complex regulation of angiogenesis in thyroid carcinoma cell lines and suggest that the array of angiogenic factors differs markedly between individual cell lines. For the first time, angiostatin, endostatin, and possibly also aaATIII are identified as novel candidate regulators of angiogenesis in thyroid carcinoma cells.  相似文献   

7.
The induction of angiogenesis is a crucial step in tumor progression, and therefore, efficient inhibition of angiogenesis is considered a powerful strategy for the treatment of cancer. In the present study, we report that the lipophilic antimicrobial peptides from EML-CAP3, a new endophytic bacterial strain isolated from red pepper leaf (Capsicum annuum L.), exhibit potent antiangiogenic activity both in vitro and in vivo. The newly obtained antimicrobial peptides effectively inhibited the proliferation of human umbilical vein endothelial cells at subtoxic doses. Furthermore, the peptides suppressed the in vitro characteristics of angiogenesis such as endothelial cell invasion and tube formation stimulated by vascular endothelial growth factor, as well as neovascularization of the chorioallantoic membrane of growing chick embryos in vivo without showing cytotoxicity. Notably, the angiostatic peptides blocked tumor cell-induced angiogenesis by suppressing the expression levels of hypoxia-inducible factor-1α and its target gene, vascular endothelial growth factor (VEGF). To our knowledge, our findings demonstrate for the first time that the antimicrobial peptides from EML-CAP3 possess antiangiogenic potential and may thus be used for the treatment of hypervascularized tumors.  相似文献   

8.
The angiogenesis inhibitor endostatin is a 20 kDA C-terminal fragment of collagen XVIII, a proteoglycan/collagen found in vessel walls and basement membranes. The endostatin fragment was originally identified in conditioned media from a murine endothelial tumor cell line. Endostatin inhibits endothelial cell migration in vitro and appears to be highly effective in murine in vivo studies. The molecular mechanisms behind the inhibition of angiogenesis have not yet been elucidated. Studies of the crystal structure of endostatin have shown a compact globular fold, with one face particularly rich in arginine residues acting as a heparin-binding epitope. It was initially suggested that zinc binding was essential for the antiangiogenic mechanism but later studies indicate that zinc has a structural rather than a functional role in endostatin. The generation of endostatin or endostatin-like collagen XVIII fragments is catalyzed by proteolytic enzymes, including cathepsin L and matrix metalloproteases, that cleave peptide bonds within the protease-sensitive hinge region of the C-terminal domain. The processing of collagen XVIII to endostatin may represent a local control mechanism for the regulation of angiogenesis.  相似文献   

9.
Endostatin promotes the anabolic program of rabbit chondrocyte   总被引:3,自引:0,他引:3  
Feng Y  Wu YP  Zhu XD  Zhang YH  Ma QJ 《Cell research》2005,15(3):201-206
  相似文献   

10.
The chick embryo chorioallantoic membrane (CAM) has long been a favored system for the study of tumor angiogenesis because at the stage of development when generally tumor grafts are placed (6–10 days of incubation), the chick’s immunocompetent system is not fully developed and the conditions for rejection have not yet been established. All studies for mammalian neoplasms, including neuroblastoma, have used tumor cell lines, tumor bioptic specimens, cell suspensions derived from tumors, and mouse tumor xenografts bioptic specimens. CAM can also be used to study the effects of antiangiogenic molecules on tumor cell suspensions of tumor bioptic specimens. This review article summarizes and discusses the literature data on the use of the CAM as an in vivo experimental model to study human neuroblastoma.  相似文献   

11.
Endostatin derived from collagen XVIII is a potent endogenous anti-angiogenic factor that induces regression of various tumors of epithelial origin. Endostatin has been shown to inhibit endothelial cell functions, however, its effect remains controversial. We first attempted here to apply the inhibitory effect of recombinant human endostatin on chondrosarcomas, which originate from the mesenchyme, in nude mice. Endostatin induced reduction of chondrosarcoma growth and tumor angiogenesis in vivo. However, endostatin showed no effect on the proliferation and migration of chondrosarcoma cells in vitro. Next, we investigated the interactions between endostatin and endothelial cells in detail. Endostatin inhibited the migration on and attachment to collagen I but did not affect the proliferation of endothelial cells. Although the migration of endothelial cells was stimulated by angiogenic factors such as basic fibroblast growth factor and vascular endothelial growth factor, endostatin showed similar inhibitory effects on it in the presence and absence of the stimulants. Moreover, the inhibitory effect against endothelial cell attachment to collagen I was attenuated or modulated in the presence of neutralizing antibodies of alpha(2), alpha(5)beta(1), and alpha(V)beta(3) integrins but not that of alpha(1) integrin. Our results suggest that endostatin might suppress the alpha(2)beta(1) integrin function of endothelial cells via alpha(5)beta(1) or alpha(V)beta(3) integrin. We propose here that endostatin might be effective for anti-angiogenic therapy for human chondrosarcomas through the suppression of alpha(2)beta(1) integrin functions in endothelial cells.  相似文献   

12.
Cathepsins are lysosomal enzymes that were shown to release the antiangiogenic fragments 16K prolactin (PRL), endostatin, and angiostatin by processing precursors at acidic pH in vitro. However, the physiological relevance of these findings is questionable because the neutral pH of physiological fluids is not compatible with the acidic conditions required for the proteolytic activity of these enzymes. Here we show that cathepsin D secreted from various tissues is able to process PRL into 16K PRL outside the cell. To specifically target extracellular proteolysis, we used tissues from PRL receptor-deficient mice, which are unable to internalize PRL. As assessed by the use of specific inhibitors of proton extruders, we show that the proteolytic activity of cathepsin D requires local acid secretion driven by Na(+)/H(+) exchangers and H(+)/ATPase. Although it is usually assumed that cathepsin-mediated generation of antiangiogenic peptides occurs in the moderately acidic pericellular milieu found in malignant tumors, we propose a new mechanism explaining the extracellular activity of this acidic protease under physiological pH. Our data support the concept that secreted lysosomal enzymes could be involved in the maintenance of angiogenesis dormancy via the generation of active antiangiogenic peptides in nonpathological contexts.  相似文献   

13.
多项动物实验和临床实啦已经充分证实,抗血管生成疗法可以抑制肿瘤生长。在可抑制肿瘤生长的分子中,许多是蛋白与多肽,包括细胞因子、趋化因子、血管内皮生长因子及其受体的抗体、可溶性受体、胞外基质蛋白片段及小分子合成多肽等。简要综述其中部分分子的作用机理及临床应用情况。  相似文献   

14.
The formation of a 'tumor-associated vasculature', a process referred to as tumor angiogenesis, is a stromal reaction essential for tumor progression. Inhibition of tumor angiogenesis suppresses tumor growth in many experimental models, thereby indicating that tumor-associated vasculature may be a relevant target to inhibit tumor progression. Among the antiangiogenic molecules reported to date many are peptides and proteins. They include cytokines, chemokines, antibodies to vascular growth factors and growth factor receptors, soluble receptors, fragments derived from extracellular matrix proteins and small synthetic peptides. The polypeptide tumor necrosis factor (TNF, Beromun) was the first drug registered for the regional treatment of human cancer, whose mechanisms of action involved selective disruption of the tumor vasculature. More recently, bevacizumab (Avastin), an antibody against vascular endothelial growth factor (VEGF)-A, was approved as the first systemic antiangiogenic drug that had a significant impact on the survival of patients with advanced colorectal cancer, in combination with chemotherapy. Several additional peptides and antibodies with antiangiogenic activity are currently tested in clinical trials for their therapeutic efficacy. Thus, peptides, polypeptides and antibodies are emerging as leading molecules among the plethora of compounds with antiangiogenic activity. In this article, we will review some of these molecules and discuss their mechanism of action and their potential therapeutic use as anticancer agents in humans.  相似文献   

15.
Although the antiangiogenic activity of indirubin‐3‐monoxime (I3M), a derivative of a Chinese anti‐leukemia medicine, has been demonstrated using transgenic zebrafish, the detail molecular mechanism has not been elicited. To further establish its role in antiangiogenic activity, we tested its potential against human umbilical vein endothelial cells (HUVECs) and the in vivo Matrigel plug model was applied to evaluate new vessel formation. We also investigated the molecular mechanisms of I3M‐induced antiangiogenic effects in HUVECs. We found that I3M significantly inhibited HUVEC proliferation (2.5–20 µM), migration (2.5–20 µM), and tube formation (10–20 µM) in HUVECs. The number of microvessels growing from the aortic rings was suppressed by I3M treatment. Moreover, I3M suppressed neovascularization in Matrigel plugs in mice. The underlying antiangiogenic mechanism of I3M was correlated with down‐regulation of the vascular endothelial growth factor receptor‐2 activation, at least a part. These findings emphasize the potential use of I3M in pathological situations involving stimulated angiogenesis, such as tumor development. J. Cell. Biochem. 112: 1384–1391, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

16.
内皮抑素及其在抗肿瘤中的应用   总被引:1,自引:0,他引:1  
内皮抑素是一种抗血管生成的抑制因子,它特异性地作用于新生微血管的内皮细胞,其水平与肿瘤血管生成有着明显的相关性。体内外的研究均表明,内皮抑素具有无毒副作用、不容易产生耐药性和易达到有效药物浓度等优点。我们简要综述了内皮抑素的特性、作用机制,及其在抗肿瘤应用等方面的研究进展。  相似文献   

17.
新生血管生成是绝大多数肿瘤得以生长和转移的必要前提。所以 ,通过抑制肿瘤血管生成来抑制肿瘤是非常有前途的一种方法 ,有望发展成为一种新型的癌症疗法。主要可以分为两大类 :一是通过抑制促血管生成信号或扩大抑制血管生成因子的作用来干扰肿瘤新生血管的形成过程 ,这领域的广泛研究已经发现了一系列促血管生成因子及其抑制剂和血管生成抑制因子 ;二是利用肿瘤血管与正常血管的差别来携带杀伤性药物直接特异性破坏已形成的肿瘤血管 ;另外 ,内皮细胞及其前体细胞制成疫苗也可起到直接杀伤作用。到目前为止 ,虽然很多抑制肿瘤血管的药物已经被用于临床试验 ,但结果往往不尽如人意 ,从长远来看 ,需要更有效的治疗方法。包括抗血管基因治疗策略 ,靶向药物导入系统的研究 ,以及抗血管生成药物和免疫疗法、化疗和放射治疗的联合应用都在探讨中。随着肿瘤模型评估系统的发展 ,抗血管治疗肿瘤的方法在不久的将来一定会广泛进入临床应用。  相似文献   

18.
Endogenous inhibitors of angiogenesis are proved to be a major factor preventing the emergence of clinically manifested stages of human cancer. The protein endostatin, a 20-kD proteolytic fragment of type XVIII collagen, is one of the most active natural inhibitors of angiogenesis. Endostatin specifically inhibits the in vitro and in vivo proliferation of endothelial cells, inducing their apoptosis through inhibition of cyclin D1. On the surface of endothelial cells, endostatin binds with the integrin alpha(5)beta(1) that activates the Src-kinase pathway. The binding of endostatin with integrins also down-regulates the activity of RhoA GTPase and inhibits signaling pathways mediated by small kinases of the Ras and Raf families. All these events promote disassembly of the actin cytoskeleton, disorders in cell-matrix interactions, and decrease in endotheliocyte mobility, i.e., promote the suppression of angiogenesis. Endostatin displays a high antitumor activity in vivo: it inhibits the progression of more than 60 types of tumors. This review summarizes results of numerous studies concerning the biological activity and action mechanism of endostatin.  相似文献   

19.
Tumors require ongoing angiogenesis to support their growth. Inhibition of angiogenesis by production of angiostatic factors should be a viable approach for cancer gene therapy. Endostatin, a potent angiostatic factor, was expressed in mouse muscle and secreted into the bloodstream for up to 2 weeks after a single intramuscular administration of the endostatin gene. The biological activity of the expressed endostatin was demonstrated by its ability to inhibit systemic angiogenesis. Moreover, the sustained production of endostatin by intramuscular gene therapy inhibited both the growth of primary tumors and the development of metastatic lesions. These results demonstrate the potential utility of intramuscular delivery of an antiangiogenic gene for treatment of disseminated cancers.  相似文献   

20.
Essential factors associated with hepatic angiogenesis   总被引:3,自引:0,他引:3  
Das SK  Vasudevan DM 《Life sciences》2007,81(23-24):1555-1564
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号