首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dynamics concerning certain intercellular junctions have been followed during the preimplantation period of development in mouse embryos. The morphological analysis of the preimplantational embryos has demonstrated, that at the initial stages of cleavage (2-4 blastomeres) the cells make contacts by means of nonspecific junctions. Specialized intercellular junctions appear at the stage of 8 blastomeres and are presented as dotted tight and gap junctions. When the embryo is developing from the stage of 8 up to the stage of 16 blastomeres, certain connective complexes appear, consisting of dotted or cord-like tight and gap junctions. At the late morula stage, the external blastomeres in the apical part have contacts with each other by means of cingular tight junctions. In this place a connective complex might emerge; it is displayed as a tight junction and one or two gap junctions. At the blastocyst stage desmosomes and adhision zones appear. Between trophectodermal cells a connective complex arises; it is presented in the slice as a tight cingular junction, desmosomes (as a rule two) and an adhision zone. Between cells of the internal cellular mass the intercellular junctions are presented as dotted tight and gap junctions. Cells of the polar trophoectoderm and cells of the internal cellular mass could have contacts by means of gap and dotted tight junctions.  相似文献   

2.
Intercellular communication in the early human embryo   总被引:5,自引:0,他引:5  
A preliminary study on intercellular communicative devices in the early human embryo has been made using dye-coupling techniques and electron microscopy (EM). Lucifer yellow injected into single blastomeres of embryos at the 4-cell stage up to the late morula stage did not spread to neighbouring cells, indicating that gap junctions and cytoplasmic bridges are not significant pathways for information transfer. Dye spread was first observed in the blastocyst stage, where trophectoderm cells and inner mass cells were shown to be in communication through gap junctions. Studies at the EM level confirmed this finding. Tight junctions and desmosome-like structures, apparent from the 6-cell stage onward, were located both peripherally and centrally and were initially nonzonular. The role of intercellular devices in the primary differentiation of the human embryo is discussed.  相似文献   

3.
4.
It has been proposed that vinculin is a microfilament bundle-membrane linking cytoskeletal protein. We used double-fluorescence microscopy to study the distribution of vinculin and F-actin in mouse oocytes and preimplantation embryos. In oocytes and in the cells of cleavage- and blastocyst-stage embryos, vinculin exhibited a diffuse cytoplasmic distribution and was concentrated in a submembranous layer. The presence of vinculin in oocytes was confirmed by immunoblotting. In oocytes, a distinct concentration of actin was observed above the second metaphase spindle. During the 8-cell stage, compacting blastomeres exhibited partial polarization of cortical vinculin and actin toward their outward-facing surfaces. In precompaction-stage blastomeres, the submembranous layer of vinculin contained a ring-like concentration in the most peripheral region of each intercellular contact area. During later development, the amount of vinculin localized in the areas of intercellular contacts became modified. In embryos ranging from the compacted 8-cell stage to the mid-morula stage, the vinculin-specific fluorescence was only intense in some intercellular contacts, being indistinct in most contact areas. In late morulae, the flattened outer cells increasingly exhibited concentration of vinculin in contact areas. In contrast, actin-specific fluorescence was clearly evident in most intercellular contacts throughout the morula stage. At the early blastocyst stage, all contacts of the trophectoderm (TE) cells again regularly exhibited concentration of both components. At the late blastocyst stage, the staining pattern changed once again: the contact-associated concentration of vinculin-specific fluorescence was not observed in polar TE cells, while remaining clear in mural TE cells. In blastocyst outgrowths, TE cells displayed typical vinculin plaques at the peripheries of the cells. The continuous changes in the distribution of vinculin and actin suggest that these components are involved in the control of cellular relationships during early development. Immunoelectron microscopy and experiments using cytochalasin were performed in an attempt to relate the distribution of vinculin to the ultrastructural features of embryo cells.  相似文献   

5.
Abstract. The organization of the cytoskeleton during early pig embryogenesis was investigated by using fluorescence and electron microscopy. The early morphogenesis of the pig embryo differed from that of the mouse, the standard model of the early mammalian development. In the pig, both compaction and polarization were gradual, and definitive polarization of cell surface microville occurred first shortly before blastocyst formation; the compaction and polarization of the mouse embryo are completed as early as at the 8 cell stage. Furthermore, the pig morula undergoes cycles of compaction and de-compaction throughout its development. Distinct changes in the distribution of actin and the actin-associated proteins α-fodrin, vinculin and E-cadherin coincided with these events. In the pig, all these molecules were evenly distributed at all aspects of the blastomeres during early cleavage and then gradually accumulated in regions of intercellular contacts toward the blastocyst stage; microfilaments in trophectoderm cells formed a cortical meshwork associated with apical microvilli and adherent junctions (zonula adherens). In the mouse, the corresponding changes occur earlier, at the 8 cell stage. Microtubules formed a network-like cortical layer beneath the microvilli at the free outer surfaces of pig blastomeres. Cytokeratin bundles were not observed until the early blastocyst, where they characteristically associated with newly formed desmosomes.
In both species a close correlation between morphologically defined developmental stages and the organization of the cytoskeleton: actin and actin-associated proteins are involved in polarization and compaction, whereas the appearance of intermediate filament bundles coincides with the building of the first epithelium, the trophectoderm; it is in the timing of events that a contrast between species is observed.  相似文献   

6.
Abstract. The organization of the cytoskeleton during early pig embryogenesis was investigated by using fluorescence and electron microscopy. The early morphogenesis of the pig embryo differed from that of the mouse, the standard model of the early mammalian development. In the pig, both compaction and polarization were gradual, and definitive polarization of cell surface microville occurred first shortly before blastocyst formation; the compaction and polarization of the mouse embryo are completed as early as at the 8 cell stage. Furthermore, the pig morula undergoes cycles of compaction and decompaction throughout its development. Distinct changes in the distribution of actin and the actin-associated proteins α-fodrin, vinculin and E-cadherin coincided with these events. In the pig, all these molecules were evenly distributed at all aspects of the blastomeres during early cleavage and then gradually accumulated in regions of intercellular contacts toward the blastocyst stage; microfilaments in trophectoderm cells formed a cortical meshwork associated with apical microvilli and adherent junctions (zonula adherens). In the mouse, the corresponding changes occur earlier, at the 8 cell stage. Microtubules formed a network-like cortical layer beneath the microvilli at the free outer surfaces of pig blastomeres. Cytokeratin bundles were not observed until the early blastocyst, where they characteristically associated with newly formed desmosomes.
In both species a close correlation between morphologically defined developmental stages and the organization of the cytoskeleton: actin and actin-associated proteins are involved in polarization and compaction, whereas the appearance of intermediate filament bundles coincides with the building of the first epithelium, the trophectoderm; it is in the timing of events that a contrast between species is observed.  相似文献   

7.
Junctions in developing mammalian embryos were investigated with lanthanum tracer and freeze-fracture methods. The outermost blastomeres of mouse morulae possess focal tight junctions which become zonular and exclude lanthanum, thereby separating the “inner” cells from the maternal environment. This compartmentalization, creating a microenvironment inside the embryo, may be required for cell determination and for the accumulation of fluid during blastocoel expansion. Desmosomes appear for the first time at the blastocyst stage in the trophoblast junctional complex which also is characterized by gap junctions and a zonula occludens with underlying microfilament-like material and microtubules. Both gap and tight junctions have been visualized in freeze-fracture replicas of rabbit blastocysts. The zonula occludens forms a permeability barrier which is consistent with the high transtrophoblast electrical resistance. Mouse presumptive and mature inner cell mass (ICM) cells were associated by frequent gap junctions whereas junctional complexes were absent. Trophoblast gap and adhering junctions and cytoplasmic processes appeared to fix the ICM to one pole of the embryo and partially isolate it from the blastocoel. These findings support the idea that the ICM and trophoblast communicate upon implantation and require that the intercellular junctions between them be dissembled if the ICM is to migrate to a mesometrial position.  相似文献   

8.
R O Kelley  R B Lauer 《In vitro》1976,12(2):155-164
Tissue-like aggregates of human embryo fibroblasts can be created in vitro by limited aspiration of cells released from substrate during subcultivation. Aggregates increase in size, exhibit intercellular junctions, display a surface topography characteristic of cellular movement, elaborate an extracellular matrix and possess features of cellular death and phagocytosis. These cells, when introduced to a new culture environment, do not migrate away from one another as is common when a primary culture is started from tissue fragments. Instead, cells exhibit continued contact with each other, and develop complex junctional structures during that association. Cellular aggregates generated in this manner may provide a useful system for providing further information on cellular adhesion, intercellular communication, morphogenetic cell movements and the mechanisms of cell death.  相似文献   

9.
Changes in cellular shape and filamentous actin (f-actin) organization within the trophectoderm of pig embryos have been studied by fluorescence microscopy during the transitions from spherical to filamentous blastocysts. Cells comprising the trophectoderm of spherical, ovoid, tubular, and filamentous blastocysts are distinctive in their shape, size, and organization of membrane-associated f-actin. Trophectodermal cells of spherical and ovoid embryos are both generally circular in shape. However, as the spherical embryo acquires an ovoid shape, uniformally distributed apical cell surface microvilli relocate to the apical intercellular margins of adjoining trophectodermal cells. Transitional modifications in cellular shape and f-actin organization are observed in tubular blastocysts when apical cell surface microvilli reappear. In elongating filamentous blastocysts, trophectodermal cells assume a spindle-shaped morphology. The f-actin associated with the apical surface is diminished whereas the associated with the basolateral membrane predominates, especially in constricted regions of the blastocyst. These observations, in conjunction with morphometric parameters of trophectodermal cells and whole blastocysts, are discussed in relation to the role of the actin cytoskeleton in processes that modify trophectodermal cell shape and function in the elongating pig blastocyst.  相似文献   

10.
Summary Tissue-like aggregates of human embryo fibroblasts can be created in vitro by limited aspiration of cells released from substrate during subcultivation. Aggregates increase in size, exhibit intercellular junctions, display a surface topography characteristic of cellular movement, elaborate an extracellular matrix and possess features of cellular death and phagocytosis. These cells, when introduced to a new culture environment, do not migrate away from one another as is common when a primary culture is started from tissue fragments. Instead, cells exhibit continued contact with each other, and develop complex junctional structures during that association. Cellular aggregates generated in this manner may provide a useful system for providing further information on cellular adhesion, intercellular communication, morphogenetic cell movements and the mechanisms of cell death. Dr. Kelley is the recipient of a Research Career Development Award (HD70407).  相似文献   

11.
李超波  胡丽丽  王振东  钟淑琦  雷蕾 《遗传》2009,31(12):1177-1184
植入前小鼠胚胎的发育事件包括第一次卵裂、胚胎基因组激活、桑椹胚致密、囊胚形成。小鼠受精卵胚胎的致密化发生在8-细胞阶段晚期, 致密过程中, 胚胎卵裂球本身以及卵裂球之间发生了一系列的变化。这些变化包括卵裂球微绒毛以及胞质成分的极性化分布, 卵裂球之间形成特殊的胞间连接。致密化是哺乳动物胚胎发育过程中的第一个细胞分化事件, 即导致了内细胞团以及滋养外胚层的产生。植入后, 内细胞团将发育成为胚体, 滋养外胚层将发育成为胎盘等胚外组织。细胞粘附分子E-cadherin介导的胞间粘附起始了致密化。卵裂球发生粘附所需的组分在致密前已经存在, 但是直至8-细胞阶段晚期连接复合体才表现出明显的粘附活性。敲除E-cadherin基因, 发现母源性的E-cadherin足以介导致密。E-cadherin介导的胞间粘附是细胞粘附的第一步。文章综述了E-cadherin介导胞间粘附的具体过程以及蛋白激酶C(Protein kinase C, PKC)调控该过程的相关 机制。  相似文献   

12.
The ultrastructure of the rat primary decidual zone   总被引:1,自引:0,他引:1  
The rat primary decidual zone (PDZ) is a transitory, avascular region of transformed fibroblasts surrounding the implanting embryo. Tracer studies have indicated that the PDZ is selectively permeable to macromolecules, permeability decreasing with increasing molecular weight of the tracer. To clarify the morphological basis of the permeability barrier, we have studied the ultrastructure of the PDZ with particular emphasis on the intercellular features and cellular junctions. The cells of the PDZ were large and tightly packed; their apposed membranes showed extensive interdigitations in some regions, but elsewhere they were relatively straight. Tight junctions, gap junctions, and desmosomelike junctions were observed between decidual cells. The tight junctions usually consisted of one or two points of membrane fusion, and they were oriented both parallel and perpendicular to the long axis of the PDZ. These junctions were frequently associated with gap junctions. Scattered pockets of dilated extracellular space between decidual cells contained collagen fibrils and an amorphous, dense material. These extracellular components were also sequestered by the decidual cells in deep invaginations of the cell surface that were continuous with the extracellular space. Decidual cells also exhibited flangelike processes that penetrated the basal laminae of the adjacent epithelium and capillary endothelium. Our present observations indicate that decidual cells are connected by tight junctions, and a previous study demonstrated that macromolecules up to 40 kDa readily cross the PDZ; hence, the tight junctions appear to be discontinuous. We suggest that the structures restricting the movement of large macromolecules (66 kDa and larger) across the PDZ from blood vessels to the embryo may include discontinuous tight junctions, membrane interdigitations, and amorphous intercellular material.  相似文献   

13.
It has been reported that various structural and functional changes occur on the surface of the plasma membrane of the ovum and embryo during fertilisation and cleavage in preparation for implantation. Glycoproteins are thought to be one of the factors in cell attachment. Thus, we investigated the changes in glycoprotein expression on the cell surface membrane of the mouse embryo by using lectins. Among seven types of lectin (ConA, WGA, UEA-I, MPA, LCA, DBA and PNA), the fluorescent intensities of ConA and WGA markedly increased from unfertilised ova to blastocysts. By quantitative analysis using immuno-scanning electron microscopy, the numbers of ConA-gold particles were small until 4-cell cleavage, but increased significantly at the blastocyst stage. In contrast, an increased number of WGA-gold particles was detected even at the 4-cell stage, and this increase continued to the blastocyst stage. From the above observations, we conclude that the numbers of sugar chains bound to both ConA andWGA increases with blastocyst formation and earlier expression is observed with WGA. The present study dearly shows that glycoproteins on the cell membrane surface of the mouse embryo quantitatively increase at the time of implantation, and the possibility has been indicated that glycoproteins are involved in intercellular recognition and adhesion between the embryo and endometrial epithelium.  相似文献   

14.
15.
Gap junctional coupling between cumulus cells is required for oocytes to reach developmental competence. Multiple connexins, which form these gap junctions, have been found within the ovarian follicles of several species including bovine. The aim of this study was to determine the role of connexin 43 (CX43) and its relationship to embryo development, after in vitro fertilization (IVF). Cumulus?oocyte complexes (COCs) were obtained from abattoir sourced, mixed breed, bovine ovaries. COCs were isolated from follicles ranging from 2 to 5 mm in size, representing the preselected follicle pool. Immediately after isolation, two cumulus cell biopsies were collected and stored for analysis pending determination of developmental outcomes. Using in vitro procedures, COCs were individually matured, fertilized, and cultured to the blastocyst stage. Biopsies were grouped as originating from COCs that arrested at the two‐cell stage (low developmental competence [LDC]) or having developed to the late morula/blastocyst stage (high developmental competence [HDC]), after IVF and embryo culture. The expression level of CX43 was found to be significantly higher in cumulus cells from COCs that had an HDC when compared with those that had an LDC. Moreover, the gap junctional intercellular coupling rate was significantly higher in cumulus from COCs deemed to have an HDC. Significantly higher expression of the cumulus health markers luteinizing hormone receptor and cytochrome p450 19A1 was found in the cumulus originating from oocytes with HDC, suggesting that this system may provide a mechanism for noninvasively testing for oocyte health in preselected bovine follicles.  相似文献   

16.
Regenerated bovine fetal fibroblast cells were derived from a fetus cloned from an adult cow and passaged every 2-3 days. Serum starvation was performed by culturing cells in DMEM/F-12 supplemented with 0.5% FCS for 1-3 days. In vitro matured bovine oocytes were enucleated by removing the first polar body and a small portion of cytoplasm containing the metaphase II spindle. Cloned embryos were constructed by electrofusion of fetal fibroblast cells with enucleated bovine oocytes, electrically activated followed by 5 h culture in 10 microg/mL cycloheximide + 5 microg/mL cytochalasin B, and then cultured in a B2 + vero-cell co-culture system. A significantly higher proportion of fused embryos developed to blastocysts by day 7 when nuclei were exposed to oocyte cytoplasm prior to activation for 120 min (41.2%) compared to 0-30 min (28.2%, p < 0.01). Grade 1 blastocyst rates were 85.1% and 73.3%, respectively. The mean number of nuclei per grade 1 blastocyst was significantly greater for 120 min exposure (110.63 +/- 7.19) compared to 0-30 min exposure (98.67 +/- 7.94, p < 0.05). No significant differences were observed in both blastocyst development (37.4% and 30.6%) and mean number of nuclei per blastocyst (103.59 +/- 6.6 and 107.00 +/- 7.12) when serum starved or nonstarved donor cells were used for nuclear transfer (p > 0.05). Respectively, 38.7%, 29.4%, and 19.9% of the embryos reconstructed using donor cells at passage 5-10, 11-20 and 21-36 developed to the blastocyst stage. Of total blastocysts, the percentage judged to be grade 1 were 80.9%, 79.2%, and 54.1%, and mean number of nuclei per grade 1 blastocysts, were 113.18 +/- 9.06, 100.04 +/- 6.64, and 89.25 +/- 6.19, respectively. The proportion of blastocyst percentage of grade 1 blastocysts, and mean number of nuclei per grade 1 blastocyst decreased with increasing passage number of donor cells (p < 0.05). These data suggest that regenerated fetal fibroblast cells support high blastocyst development and embryo quality following nuclear transfer. Remodeling and reprogramming of the regenerated fetal fibroblast nuclei may be facilitated by the prolonged exposure of the nuclei to the enucleated oocyte cytoplasm prior to activation. Serum starvation of regenerated fetal cells is not beneficial for embryo development to blastocyst stage. Regenerated fetal fibroblast cells can be maintained up to at least passage 36 and still support development of nuclear transfer embryos to the blastocyst stage.  相似文献   

17.
The ultrastructural features of the principal cell in the epididymal epithelium of the monkey epididymis are suggestive of the cell carrying out a dual function of absorption and secretion. Both these functions occur on the luminal surface of the cell as well as on the lateral and basal aspects of the cell which face the intercellular spaces. Transmision Electron Microscopic studies of epididymal tissues following their impregnation with lanthanum nitrate indicated that the intercellular spaces are effectively sealed-off from the luminal space by the apically situated tight junctions between adjoining principal cells. The intercellular spaces are contiguous with the perivascular spaces of the subepithelial blood capillaries. It is suggested that the absorptive and secretory functions occuring on the apical surface of cells may be related to the creation of an appropriate intraluminal milieu for the maturation of spermatozoa while the occurrence of these functions in the intercellular spaces may represent an exchange of substances between the principal cells and the subepithelial capillaries.  相似文献   

18.
Gap junctional communication in the preimplantation mouse embryo.   总被引:15,自引:0,他引:15  
C W Lo  N B Gilula 《Cell》1979,18(2):399-409
In this study, we examined cell-to-cell communication via gap junctional channels between the cells of the early mouse embryo from the 2-cell stage to the preimplantation blastocyst stage. The extent of communication was examined by monitoring for the presence of ionic coupling, the transfer of injected fluorescein (molecular weight 330) and the transfer of injected horseradish peroxidase (molecular weight 40,000). In the 2-cell, 4-cell and precompaction 8-cell embryos, cytoplasmic bridges between sister blastomeres were responsible for ionic coupling and the transfer of injected fluorescein as well as the transfer of injected horseradish peroxidase.In contrast, no communication was observed between blastomeres from different sister pairs. Junction-mediated intercellular communication was unequivocably detected for the first time in the embryo at the early compaction stage (late 8-cell embryo). At that stage, ionic coupling was present and fluorescein injected into one cell spread to all eight cells of the embryo. Injected horseradish peroxidase was passed to only one other cell, however, again indicating the presence of cytoplasmic bridges between sister blastomeres. Junctional communication with respect to both ionic coupling and dye transfer was retained between all the cells throughout compaction. At the blastocyst stage, trophoblast cells of the blastocyst were linked by junctional channels to other trophoblast cells as well as to cells of the inner cell mass, as indicated by the spread of injected fluorescein. In addition, the extent of communication between the cells of the inner cell mass was examined in inner cell masses isolated by immunosurgery; both ionic coupling and the complete spread of injected fluorescein were observed.  相似文献   

19.
An ultrastructural study of mouse and rat embryo implantation sites was undertaken to determine whether the uterine luminal epithelial cells surrounding the blastocyst exhibited the morphologic characteristics of apoptotic or necrotic cell death. In both species the epithelial cells exhibited all of the characteristics of apoptosis, including surface blebbing, shrinkage and fragmentation of the cells, condensation of chromatin, and indentation and fragmentation of nuclei. Cytoplasmic organelles remained morphologically intact, and the cytoplasm maintained normal or increased staining density. Also, the epithelial cells and cell fragments were phagocytosed by the adjacent trophoblast cells. The epithelial cells did not exhibit the characteristics of necrotic cell death, such as swollen cells and mitochondria, damaged surface membranes, and disintegrated cytoplasmic organelles. We conclude that uterine epithelial cells surrounding mouse and rat embryos during implantation undergo apoptotic cell death leading to their phagocytosis by trophoblast cells.  相似文献   

20.
From the 20 mm stage, in the cells of the dogfish embryo thyroid, some Golgi vesicles get the ability to trap iodine. At subsequent stages, electrondense intracytoplasmic cavities with microvilli are observed in the Golgi field; their membranes also trap iodine. These cavities increase in volume, draw toward the cellular periphery and export their contents in an intercellular space previously limited by tight junctions. The same events occur in several adjacent cells, which constitute the first follicular lumen. The last stage of follicular individualization is basement membrane formation. Arguments are given which support the hypothesis of the Golgi origin of intracytoplasmic cavities with microvilli. Iodine organification just as thyroid hormones synthesis and secretion occur at 25 mm stage, when cells are not grouped in follicle. It is concluded that cells containing intracytoplasmic cavities with microvilli are fully functional units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号