首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Since there are data to indicate that heavy exercise decreases insulin binding to skeletal muscle at a point when glucose uptake is known to be augmented, we tested the hypothesis that insulin-stimulated glucose uptake and metabolism are dissociated from insulin binding after exercise. Therefore, insulin binding, 2-deoxy-d-glucose (2-DOG) uptake and glucose incorporation into glycogen and glycolysis were compared in soleus and EDL muscles of intensively exercised (2-3 h) mice and non-exercised mice. Basal 2-DOG uptake was increased in the exercised EDL (P less than 0.05) but not in the exercised soleus (P greater than 0.05). However, in both muscles intense exercise increased insulin-stimulated (0.1-16 nM) 2-DOG uptake (P less than 0.05). The rates of glycogenesis were increased in both the exercised muscles (P less than 0.05) as was the rate of glycolysis in the exercise soleus (P less than 0.05). Glycolysis was not altered in the EDL (P greater than 0.05). In the face of the increased 2-DOG uptake and glucose metabolism in the exercised muscles, insulin binding was not altered in the exercised soleus muscle (P greater than 0.05) and was decreased in the exercised EDL (P less than 0.05). These results indicate that after intense exercise there is a dissociation of insulin binding from insulin action on glucose uptake and metabolism in skeletal muscles.  相似文献   

2.
1. Crude extracts of seeds of Pinus radiata catalysed acetate-, propionate-, n-butyrate- and n-valerate-dependent PP(i)-ATP exchange in the presence of MgCl(2), which was apparently due to a single enzyme. Propionate was the preferred substrate. Crude extracts did not catalyse medium-chain or long-chain fatty acid-dependent exchange. 2. Ungerminated dry seeds contained short-chain fatty acyl-CoA synthetase activity. The activity per seed was approximately constant for 11 days after imbibition and then declined. The enzyme was located only in the female gametophyte tissue. 3. The synthetase was purified 70-fold. 4. Some properties of the enzyme were studied by [(32)P]PP(i)-ATP exchange. K(m) values for acetate, propionate, n-butyrate and n-valerate were 4.7, 0.21, 0.33 and 2.1mm respectively. Competition experiments between acetate and propionate demonstrated that only one enzyme was involved and confirmed that the affinity of the enzyme for propionate was greater than that for acetate. CoA inhibited fatty acid-dependent PP(i)-ATP exchange. The enzyme catalysed fatty acid-dependent [(32)P]PP(i)-dATP exchange. 5. The enzyme also catalysed the fatty acyl-AMP-dependent synthesis of [(32)P]ATP from [(32)P]PP(i). Apparent K(m) (acetyl-AMP) and apparent K(m) (propionyl-AMP) were 57mum and 7.5mum respectively. The reaction was inhibited by AMP and CoA. 6. Purified enzyme catalysed the synthesis of acetyl-CoA and propionyl-CoA. Apparent K(m) (acetate) and apparent K(m) (propionate) were 16mm and 7.5mm respectively. The rate of formation of acetyl-CoA was enhanced by pyrophosphatase. 7. It was concluded that fatty acyl adenylates are intermediates in the formation of the corresponding fatty acyl-CoA.  相似文献   

3.
Training stimulates glucose uptake and metabolism by muscles independent of a rise in serum glucose. Whether this increased insulin action is associated with enhanced insulin binding in muscles is unknown. We studied the effect of 6 weeks of treadmill running on insulin binding, uptake of 2-deoxy-D-glucose, glycolysis, and glycogenesis by the soleus muscle of Swiss Webster mice. Training was progressively increased. The in vitro studies using intact soleus preparations were done 48 h after the last exercise bout. Training increased insulin binding, insulin-stimulated uptake of 2-deoxy-D-glucose, and glycogenesis but not glycolysis in the soleus. Our data suggest that the enhanced glucose uptake and metabolism in muscles induced by exercise training are associated with an increase in insulin binding.  相似文献   

4.
After 28 days of hindlimb-suspension, insulin binding, 2-deoxy-D-glucose (2-DG) uptake, and glucose metabolism (glycolysis and glycogenesis) were determined at various insulin concentrations (0.2-30 nM) in soleus muscle of young (18-day-old) and adult (150-day-old) rats. Compared with age-matched controls the young (YS) and adult suspended (AS) rats had lower soleus and body weights and insulin levels (P less than 0.05). Per milligram of protein, insulin binding, 2-DG uptake, and the rate of glycolysis were increased by approximately 200%, and the rate of glycogenesis was increased approximately 100% in the YS group (P less than 0.05). Except for a reduction in glycogenesis (P less than 0.05) all other parameters also increased in the AS rats (P less than 0.05). On the basis of the whole muscle the rate of glucose metabolism (glycogenesis + glycolysis) was reduced in the YS rats (P less than 0.05), but in the AS rats glucose metabolism was similar to the controls. Thus the increased glucose metabolism (i.e., per milligram of protein) in the YS and AS groups may represent a compensatory response by atrophied muscle to attempt to sustain glucose removal from the circulation. Because greater insulin binding occurred in YS muscle [35% slow-twitch (ST)] than in the control group (70% ST), and greater insulin binding occurred in the AS (81% ST) than in the control group (90% ST), higher insulin binding capacities are not always related to a high proportion of ST muscle fibers. In conclusion, after hindlimb suspension, marked increments in insulin binding and glucose metabolism occur in the soleus muscle.  相似文献   

5.
Effects of exercise on insulin binding and glucose metabolism in muscle   总被引:1,自引:0,他引:1  
To elucidate the mechanism of enhanced insulin sensitivity by muscle after exercise, we studied insulin binding, 2-deoxy-D-[1-14C]glucose (2-DOG) uptake and [5-3H]glucose utilization in glycolysis and glycogenesis in soleus and extensor digitorum longus (EDL) muscles of mice after 60 min of treadmill exercise. In the soleus, glycogenesis was increased after exercise (P less than 0.05) and remained sensitive to the action of insulin. Postexercise insulin-stimulated glycolysis was also increased in the soleus (P less than 0.05). In the EDL, glycogenesis was increased after exercise (P less than 0.05). However, this was already maximal in the absence of insulin and was not further stimulated by insulin (0.1-4 nM). The disposal of glucose occurred primarily via the glycolytic pathway (greater than 60%) in the soleus and EDL at rest and after exercise. The uptake of 2-DOG uptake was not altered in the soleus after exercise (4 h incubation at 18 degrees C). However, with 1-h incubations at 37 degrees C, a marked increase in 2-DOG uptake after exercise was observed in the soleus (P less than 0.05) in the absence (0 nM) and presence of insulin (0.2-4 nM) (P less than 0.05). A similar postexercise increase in 2-DOG uptake occurred in EDL. Despite the marked increase in glucose uptake and metabolism, no changes in insulin binding were apparent in either EDL or soleus at 37 degrees C or 18 degrees C. This study shows that the postexercise increase of glucose disposal does not appear to be directly attributable to increments in insulin binding to slow-twitch and fast-twitch muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
The uptake and utilization of [1-14C]glycerol was determined in pieces of rat epididymal fat-pads incubated in Krebs--Ringer bicarbonate buffer containing albumin. Insulin (200 muunits/ml), adrenaline (epinephrine; 0.5 mug/ml) and glucose (0, 5, 15 and 20 mM) were added to the medium. Changes in the specific radioactivity of the tracer during the incubation were taken into account in calculating the rate of glycerol utilization. Adrenaline decreased glycerol uptake, whereas insulin plus adrenaline increased it. The rate of incorporation of glycerol into glycerides was decreased by adrenaline and insulin, singly or together. Insulin increased the rate of formation of CO2 and fatty acids from glycerol. The formation of CO2 and fatty acids was further enhanced by insulin plus adrenaline. The decrease in glycerol uptake induced by adrenaline, the decrease in incorporation of glycerol into glycerides induced by insulin and insulin plus adrenaline and the synthesis of fatty acids were dependent on the presence of glucose in the medium. Thus insulin and adrenaline act on glycerol utilization in adipose tissue and some of their effects are mediated by action on glucose metabolism, but others are independent of this.  相似文献   

8.
9.
We studied the in vivo and in vitro effect of p-chlorophenoxyisobutyrate (CPIB) on insulin binding and glucose transport in isolated rat adipocytes. In the in vitro study, adipocytes were incubated with 1mM of CPIB for 2 h at 37 degrees C, pH 7.4, and then insulin binding (37 degrees C, 60 min) and 3-0-methylglucose transport (37 degrees C, 2s) were measured. Incubation with CPIB did not affect either insulin binding or glucose transport in the cells. The addition of insulin (10 ng/ml) with CPIB to the incubation media also did not affect the following insulin binding and glucose transport. In the in vivo study, rats were fed a high sucrose-diet containing 0.25% CPIB for 7 days. Serum cholesterol, plasma free fatty acid, and insulin levels were significantly decreased in the CPIB-treated rats. The treated rats demonstrated an almost 2 fold increased maximal binding capacity for insulin (189,000 sites/cell for treated vs 123,000 sites/cell for control cells). Basal glucose transport (glucose transport in the absence of insulin) significantly decreased in the CPIB-treated rats, although insulin-stimulated glucose transport was comparable in treated and control cells. Thus, CPIB might have no direct effect on glucose transport and insulin binding, as determined by the in vitro studies. Furthermore, a relatively short-term in vivo treatment with CPIB, such as 7 days, did not stimulate glucose transport.  相似文献   

10.
The ketone body beta-hydroxybutyrate (B-OHB) has been shown to be teratogenic to early-somite mouse embryos, although the mechanism responsible for these defects has not been determined. In an attempt to define this mechanism, the present study investigated the normal pattern of both glucose and B-OHB utilization in the developing embryo and fetus. Furthermore, the metabolic interaction of these two substrates, i.e., the potential for B-OHB to inhibit glycolysis, was studied. All studies compared early and late embryonic periods of development as well as fetal stages. The results show that the early embryo relies almost exclusively on glycolysis for energy metabolism and suggests that there is an increasing importance of the Krebs cycle with increasing gestational age. Similarly, the early embryo has a low capacity to metabolize B-OHB, whereas later gestational stages display a greater rate of utilization. Finally, there appears to be no inhibition of glycolysis by B-OHB (via so-called "substrate interactions") during early embryonic stages. However, the compound significantly inhibits glycolysis during later embryonic and fetal stages. These studies suggest that the teratogenicity of B-OHB in the early embryo is not due to its effects on modulating glycolysis, although this mechanism may be operating at later periods of gestation.  相似文献   

11.
12.
13.
Our studies show that insulin receptors exist on chicken skeletal muscle cells at all developmental stages in culture. 125I-labeled insulin binding at physiological concentrations to mature myotubes demonstrated saturability, binding proportional to cell number, reversibility, and specificity by competition with native hormone which reduced specific binding by 40% with 1 ng/ml and was maximal with 10 μg/ml. Further evidence for specificity was shown by no competition of insulin specific binding with insulin A chain, insulin B chain, growth hormone, and thyrotropin. Two binding sites were detected, with affinity constants of 1010M?1 and 2 × 109M?1. The hormone receptor complex showed rapid dissociation (70% in 30 min) after equilibrium binding. During myogenesis, an increase in insulin receptors occurs from 500 per proliferating myoblast to 3000 per cell equivalent in mature (6 day) myotubes. Since these studies demonstrate that insulin receptors are present and other studies have shown that insulin is present during most of chicken embryogenesis, insulin may regulate muscle development in vivo to a greater degree than previously suspected.  相似文献   

14.
Two trials were conducted to investigate the effect of corticosterone (CORT) on protein metabolism and the amino acid composition in muscle tissues of broiler chickens (Gallus gallus domesticus). In Trial 1, two groups of 30 broiler chickens were subjected to control or CORT treatment (30 mg/kg diet) from 28 to 39 days of age. In Trial 2, three groups of chickens of 28 days of age were randomly subjected to one of the following treatments for 7 days: CORT (30 mg/kg diet), pair-fed (maintaining the same feed intake as CORT treatment) and control treatments. The body mass gain and feed efficiency was significantly decreased by CORT treatment, while the food intake was decreased. The breast and thigh masses (% body mass) were significantly suppressed by CORT treatment, while the abdominal fat and liver masses (%) were obviously increased. The plasma levels of glucose, urate and total amino acid were significantly elevated by CORT treatment. The capacity for protein synthesis, estimated by RNA:protein ratio, were significantly suppressed by CORT in M. pectoralis major and M. biceps femoris. The 3-methylhistidine concentrations were significantly increased in both M. pectoralis major and M. biceps femoris of CORT chickens, compared to control but not the pair-fed chickens. The amino acid composition of M. pectoralis major and M. biceps femoris was not significantly affected by CORT treatment. In conclusion, the arrested growth in skeletal muscles induced by CORT administration has tissue specificity. The CORT treatment retards the growth of skeletal muscle by suppressed protein synthesis and augmented protein catabolism.  相似文献   

15.
The effects of oral hypoglycaemic drugs, SPC-703 (n-/p-toluenesulphonyl/-5-methyl-2-pirazoline-1-carbonami de) and tolbutamide on insulin binding and glucose metabolism by isolated adipocytes were studied. After 10 days of administration of both sulphonylurea derivatives, no differences were observed in insulin concentration between both experimental and the control groups of animals, despite a significant fall in blood glucose level. SPC-703 and tolbutamide in concentrations of 1 mM added in vitro to the suspension of adipocytes had no effect on insulin binding or on basal and insulin simulated glucose metabolism. Daily administration of 300 mg/kg body weight of SPC-703 or tolbutamide for 10 days resulted in 48% and 34% increase of specific binding of insulin by adipocytes, respectively. From the Scatchard plot analysis we noted that the increase of binding resulted from increased affinity of insulin receptors for hormone. Simultaneous increase in basal and insulin stimulated glucose metabolism by adipocytes, as measured by 14CO2 production and 14C incorporation into cellular lipids, was observed. The results indicate that hypoglycaemic action of sulphonylureas may be explained by increased affinity of insulin receptors and the stimulating action of these compounds on peripheral glucose metabolism.  相似文献   

16.
17.
18.
目的:观察脂联素受体激动剂AdipoRon对小鼠成肌细胞株(C2C12)胰岛素敏感性的影响,并探讨其作用机制。方法:使用马血清将C2C12诱导分化为成肌细胞,分为6组(9个复孔):空白对照组、AdipoRon (脂联素受体激动剂)高剂量组、AdipoRon低剂量组、胰岛素组以及AdipoRon低剂量+PI3K (磷脂酰肌醇3激酶)抑制剂组和胰岛素+PI3K抑制剂组,作用12 h,收集上清检测葡萄糖消耗量,使用CCK8测定细胞增殖。六孔板中将C2C12诱导分化为肌管细胞,加入药物作用12 h,并用RT-PCR法检测GLUT4的mRNA水平。结果:与空白对照组相比,AdipoRon高剂量组、AdipoRon低剂量组、胰岛素组耗糖量均有所增加,具有统计学意义(P<0.05)。加入PI3K抑制剂组后,耗糖量与空白对照组无统计学意义。与空白对照组相比,AdipoRon高剂量组、AdipoRon低剂量组、胰岛素组细胞均有增殖,但只有胰岛素组具有统计学意义(P<0.05)。与对照空白组相比,AdipoRon高剂量组、AdipoRon低剂量组、胰岛素组GLUT4mRNA水平均有所提高,具有统计学意义(P<0.05)。加入PI3K抑制剂组后,GLUT4mRNA水平与空白对照组无统计学意义。结论:AdipoRon能够不影响细胞增殖的情况下增加葡萄糖的消耗量,这可能是通过提高胰岛素敏感性发挥作用的,但具体机制尚待进一步的研究。  相似文献   

19.
1. The interaction of insulin and isometric exercise on glucose uptake by skeletal muscle was studied in the isolated perfused rat hindquarter. 2. Insulin, 10 m-i.u./ml, added to the perfusate, increased glucose uptake more than 10-fold, from 0.3-0.5 to 5.2-5.4 mumol/min per 30g of muscle in hindquarters of fed and 48h-starved rats respectively. In contrast, it did not stimulate glucose uptake in hindquarters from rats in diabetic ketoacidosis. 3. In the absence of added insulin, isometric exercise, induced by sciatic-nerve stimulation, increased glucose uptake to 4 and 3.4 mumol/min per 30g of muscle in fed and starved rats respectively. It had a similar effect in rats with moderately severe diabetes, but it did not increase glucose uptake in rats with diabetic ketoacidosis or in hindquarters of fed rats that had been "washed out" with an insulin-free perfusate. Insulin, at concentrations which did not stimulate glucose uptake in resting muscle, restored the stimulatory effect of exercise in these situations. 4. The stimulation of glucose uptake by exercise was independent of blood flow and the degree of tissue hypoxia; also it could not be reproduced by perfusing resting muscle with a medium previously used in an exercise experiment. 5. At rest glucose was not detectable in muscle cell water of fed and starved rats even when perfused with insulin. In the presence of insulin, a small accumulation of glucose, 0.25 mM, was noted in the muscle of ketoacidotic diabetic rats, suggesting inhibition of glucose phosphorylation, as well as of transport. 6. During exercise, the calculated intracellular concentration of glucose in the contracting muscle increased to 1.1-1.6mM in the fed, starved and moderately diabetic groups. Insulin significantly increased the already high rates of glucose uptake by the hindquarters of these animals but it did not alter the elevated intracellular concentration of glucose. 7. In severely diabetic rats, exercise did not cause glucose to accumulate in the cell in the absence of insulin. In the presence of insulin, it increased glucose uptake to 6.1 mumol/min per 30g of muscle and intracellular glucose to 0.72 mM. 8. The data indicate that the stimulatory effect of exercise on glucose uptake requires the presence of insulin. They suggest that in the absence of insulin, glucose uptake is not enhanced by exercise owing to inhibition of glucose transport into the cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号