首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We previously found that ingestion of an extract of Ninjin-to (NJT; Ren-Shen-Tang) suppressed the development of autoimmune diabetes in C57BL/KsJ mice induced by multiple low doses of streptozotocin. To verify this effects on spontaneous autoimmune diabetes, the effects of NJT on NOD mice were investigated in the present study. NJT, provided in drinking water (0.25%, 450 mg/kg/day) from 6 weeks of age, significantly prevented the incidence of spontaneous diabetes in female NOD mice at 30 weeks of age (2/10) compared with that of the controls (7/10), with no effects on body growth or food intake. Even in non-diabetic mice, the blood glucose levels of the NOD controls gradually increased with age, while such increase in NJT-treated mice was significantly suppressed by preventing any deficiency of glucose tolerance. NJT also significantly suppressed the progression of insulitis, which causes insulin deficiency and diabetes. It is well known that NOD mice develop insulitis and diabetes because of their Th1-dominant autoimmune response. IFN-gamma production from splenic T lymphocytes stimulated with anti-CD3 monoclonal antibodies was increased, whereas IL-4 production was decreased in NOD controls compared to age- and sex-matched normal ICR mice. NJT-treatment reduced these deviations of cytokine production in NOD mice. These data all suggest that NJT can prevent spontaneous insulitis and diabetes by the modification of deviated cytokine production in NOD mice.  相似文献   

2.
The catalase activities in the blood and organs of the acatalasemic (C3H/AnLCsb-Csb) mouse of the C3H strain are lower than those of the normal (C3H/AnLCSa-Csa) mouse. We examined the effects of post low-dose (0.5 Gy) X-ray irradiation which reduced the oxidative damage under carbon tetrachloride-induced hepatopathy in acatalasemic or normal mice. As a result, the 0.5 Gy irradiation after carbon tetrachloride administration decreased the glutamic oxaloacetic and glutamic pyruvic transaminase activity in the acatalasemic mouse blood to a level similar to that of the acatalasemic mouse blood not treated with carbon tetrachloride; this is in contrast to a high-dose (15 Gy) irradiation. In the same manner, pathological disorder was improved by 0.5 Gy irradiation. The fat degeneration in normal mice was quickly reduced, in contrast to acatalasemic mice. These findings suggest that low-dose irradiation after carbon tetrachloride administration accelerates the rate of recovery and that catalase plays an important role in the recovery from hepatopathy induced by carbon tetrachloride, in contrast to high-dose irradiation.  相似文献   

3.
Low-dose-rate radiation modulates various biological responses including carcinogenesis, immunological responses and diabetes. We found that continuous irradiation with low-dose-rate gamma rays ameliorated type II diabetes in db/db mice, diabetic mice that lack leptin receptors. Whole-body exposure of db/db mice to low dose-rate gamma radiation improved glucose clearance without affecting the response to insulin. Histological studies suggested that degeneration of pancreatic islets was significantly suppressed by the radiation. Insulin secretion in response to glucose loading was increased significantly in the irradiated mice. These results suggest that low-dose-rate gamma radiation ameliorates type II diabetes by maintaining insulin secretion, which gradually decreases during the progression of diabetes due to degeneration of pancreatic islets. We also inferred that protection from oxidative damage is involved in the anti-diabetic effect of low-dose-rate gamma rays because expression and activity of pancreatic superoxide dismutase were significantly elevated by low-dose-rate gamma radiation.  相似文献   

4.
In the present study, we investigated the therapeutic potential of a selective S1P1 receptor modulator, ponesimod, to protect and reverse autoimmune diabetes in non-obese diabetic (NOD) mice. Ponesimod was administered orally to NOD mice starting at 6, 10, 13 and 16 weeks of age up to 35 weeks of age or to NOD mice showing recent onset diabetes. Peripheral blood and spleen B and T cell counts were significantly reduced after ponesimod administration. In pancreatic lymph nodes, B lymphocytes were increased and expressed a transitional 1-like phenotype. Chronic oral ponesimod treatment efficiently prevented autoimmune diabetes in 6, 10 and 16 week-old pre-diabetic NOD mice. Treatment withdrawal led to synchronized disease relapse. Ponesimod did not inhibit the differentiation of autoreactive T cells as assessed by adoptive transfer of lymphocytes from treated disease-free NOD mice. In addition, it did not affect the migration, proliferation and activation of transgenic BDC2.5 cells into the target tissue. However, ponesimod inhibited spreading of the T cell responses to islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP). Treatment of diabetic NOD mice with ponesimod induced disease remission. However, here again, upon treatment cessation, the disease rapidly recurred. This recurrence was effectively prevented by combination treatment with a CD3 antibody leading to the restoration of self-tolerance. In conclusion, treatment with a selective S1P1 modulator in combination with CD3 antibody represents a promising therapeutic approach for the treatment of autoimmune diabetes.  相似文献   

5.
Islet autoimmunity in children who later progress to type 1 diabetes is preceded by dysregulated serum metabolite profiles, but the origin of these metabolic changes is unknown. The gut microbiota affects host metabolism and changes in its composition contribute to several immune-mediated diseases; however, it is not known whether the gut microbiota is involved in the early metabolic disturbances in progression to type 1 diabetes. We rederived non-obese diabetic (NOD) mice as germ free to explore the potential role of the gut microbiota in the development of diabetic autoimmunity and to directly investigate whether the metabolic profiles associated with the development of type 1 diabetes can be modulated by the gut microbiota. The absence of a gut microbiota in NOD mice did not affect the overall diabetes incidence but resulted in increased insulitis and levels of interferon gamma and interleukin 12; these changes were counterbalanced by improved peripheral glucose metabolism. Furthermore, we observed a markedly increased variation in blood glucose levels in the absence of a microbiota in NOD mice that did not progress to diabetes. Additionally, germ-free NOD mice had a metabolite profile similar to that of pre-diabetic children. Our data suggest that germ-free NOD mice have reduced glycaemic control and dysregulated immunologic and metabolic responses.  相似文献   

6.
Liang K  Du W  Zhu W  Liu S  Cui Y  Sun H  Luo B  Xue Y  Yang L  Chen L  Li F 《The Journal of biological chemistry》2011,286(45):39537-39545
The development of insulin-dependent diabetes mellitus (IDDM) results from the selective destruction of pancreatic beta-cells. Both humans and spontaneous models of IDDM, such as NOD mice, have an extended pre-diabetic stage. Dynamic changes in beta-cell mass and function during pre-diabetes, such as insulin hyper-secretion, remain largely unknown. In this paper, we evaluated pre-diabetic female NOD mice at different ages (6, 10, and 14 weeks old) to illustrate alterations in beta-cell mass and function as disease progressed. We found an increase in beta-cell mass in 6-week-old NOD mice that may account for improved glucose tolerance in these mice. As NOD mice aged, beta-cell mass progressively reduced with increasing insulitis. In parallel, secretory ability of individual beta-cells was enhanced due to an increase in the size of slowly releasable pool (SRP) of vesicles. Moreover, expression of both SERCA2 and SERCA3 genes were progressively down-regulated, which facilitated depolarization-evoked secretion by prolonging Ca(2+) elevation upon glucose stimulation. In summary, we propose that different mechanisms contribute to the insulin hyper-secretion at different ages of pre-diabetic NOD mice, which may provide some new ideas concerning the progression and management of type I diabetes.  相似文献   

7.
Type 1 diabetes acceleration in nonobese diabetic (NOD) mice through coxsackievirus B4 (CVB4) infection requires a preexisting critical mass of autoreactive T cells in pancreatic islets, and in the absence of this insulitic threshold, CVB4 infection leads to long-term disease protection. To understand this acceleration and protection process, we challenged 8- and 12-week-old NOD mice containing a disruption in interleukin-4 (IL-4) or gamma interferon (IFN-gamma) genes (NOD IL-4-/- and NOD IFN-gamma-/-, respectively) with a diabetogenic, pancreatropic Edwards strain of CVB4. The elimination of IL-4 did not alter the rate of insulitis or diabetes development in NOD mice, while the elimination of IFN-gamma delayed these events several weeks. CVB4 infection in 8-week-old mice only significantly accelerated the onset of diabetes in a subset of standard, but not IL-4- or IFN-gamma-deficient, NOD mice. Long-term diabetes protection was established in standard NOD mice as well as in the NOD IFN-gamma-/- mice that did not rapidly develop disease following CVB4 infection at 8 weeks of age. When mice were infected at 12 weeks of age, the onset of diabetes was accelerated in NOD IL-4-/- mice, while neither acceleration nor long-term protection was elicited in NOD IFN-gamma-/- mice. No differences were observed in the kinetics of CVB4 clearance in pancreases from NOD, NOD IL-4-/-, and NOD IFN-gamma-/- mice. Collectively, these results suggest that at the insulitis threshold at which CVB4 infection can first accelerate the onset of diabetes in NOD mice, IL-4 as well as IFN-gamma contributes to this pathogenic process. The protective mechanism against diabetes elicited in NOD mice infected with CVB4 prior to the development of a critical threshold level of insulitis requires neither IL-4 nor IFN-gamma.  相似文献   

8.
Heme oxygenase-1 (HO-1) is crucial in regulating oxidative injury. The present study was designed to assess whether HO-1 upregulation by cobalt protoporphyrin IX (CoPP) moderates or prevents the diabetic state in non-obese diabetic (NOD) mice, an animal model for Type 1 diabetes (T1D). HO-1 expression and HO activity were upregulated in the pancreas by the intermittent administration of CoPP. This was associated with decreases in blood glucose and pancreatic O2-, but increased pAKT and BcL-XL and cell survival. A considerable number of beta cells were preserved in the islets of CoPP-treated NOD mice, while none were found in untreated diabetic mice. The number of CD11c+ dendritic cells was decreased in the pancreas of CoPP-treated NOD mice (p  相似文献   

9.
Hossain M  Devi PU  Bisht KS 《Teratology》1999,59(3):133-138
Pregnant Swiss albino mice were exposed to 0.3, 0.5, 1.0, or 1.5 Gy of gamma radiation on day 17 of gestation. Sham-exposed controls were examined for comparison. Exposed mice as well as controls were left to complete gestation and parturition. Pups were observed up to age 6 weeks; appearance of physiological markers (pinna detachment, eye opening, fur development, vaginal opening, and testes descent), postnatal mortality, body weight, body length, head length, head width, and tail length were recorded. A significant delay in fur development was observed at 0.3 Gy and in other physiological markers at doses above 0.3 Gy, while a significant increase in mortality and growth retardation occurred only at 1.0 and 1.5 Gy. Although congenital anomalies such as syndactyly and bent tail were observed at doses of 0.5-1.5 Gy, only syndactyly showed a statistically significant increase in frequency. A statistically significant lower body weight was observed during the first week of postnatal life, but body weights increased to normal levels by the second week in animals exposed to doses less than 1.0 Gy. At higher doses, low body weight persisted throughout the postnatal period. Head length and tail length showed a significant decrease from controls at 0.5-1.5 Gy, and the effect was evident from birth to age 6 weeks. But a similar effect on body length and head width was noticed only at 1.0 and 1.5 Gy. These studies indicate that even in the absence of any major morphological changes, normal development of physiological landmarks and postnatal growth can be impaired by fetal irradiation at 17 days p.c. (post coitus). Morphological changes appear to have a threshold between 0.3-0.5 Gy, while physiological marker effects may occur with a lower threshold.  相似文献   

10.
Cell senescence is seen in many types of differentiated cells but age changes in stem cells have not previously been clearly demonstrated. Changes in stem cells may be of great importance for the ageing process, because any decline with age in the numbers and functional integrity of stem cells can lead to progressive deterioration of function and of proliferative homeostasis in tissues. Stem cells of the murine small intestine provide an excellent model system because these cells occupy a well-defined position near the base of the crypts of Lieberkühn. We examined mice aged between 5 and 32 months and found age-related alterations in the histology of the small intestine and in the apoptotic response of stem cells to low-dose irradiation. Apoptosis in the crypts is concentrated around the stem cell position and can be markedly elevated by exposure to radiation or cytotoxic agents, suggesting that “suicide” of damaged stem cells may be an important system for long-term tissue maintenance. Animals aged 5, 15, 18, and 29 months were exposed to either 1 or 8 Gy gamma irradiation. A twofold increase in the level of apoptosis was seen following 1 Gy gamma irradiation in the 29-month-old animals, compared to the young and middle-age groups. After 8 Gy irradiation the level of apoptosis in all age groups was high and the age effect less pronounced. The data suggest that stem cells do undergo some functional alteration with age.  相似文献   

11.
Over 50% of all cancer patients presently receive radiotherapy at one stage in their treatment course. Inevitably skin is one of the most frequently damaged tissue due to its localization and constant turn-over. Our present goal is to reduce radiation-induced complications in human skin through stem cell therapy, particulary in human epidermis. Mesenchymal Stem Cells (MSCs) have been shown to be multipotent cells able to engraft in many tissues after injury. Herein, we isolated human MSCs and tested their capability to improve skin wound healing after irradiation. This potential was assessed in NOD/SCID mice which received 30 Gy locally on the thigh. This dose caused within 3 weeks local epidermis necrosis which was repaired within 13 weeks. MSCs were intravenously injected in irradiated mice 24 hours after exposure. Clinical scoring throughout 6 weeks gave indications that human MSCs reduced the extent of damage and accelerated the wound healing process. We show by quantitative qPCR and histological studies the presence of human MSCs derived cells into the scar. Human MSCs homed to the damaged skin and participated to the wound healing process. These results open prospects for cellular therapy by MSCs in irradiated epithelial tissues and could be extended to the whole general field of cutaneous cicatrization, particularly after burns.  相似文献   

12.
NOD mice spontaneously develop diabetic syndrome similar to that of insulin-dependent diabetes mellitus in man. Insulitis, i.e., lymphocytic infiltration into the pancreatic islets is the etiologic pathological lesion in the development of diabetes mellitus in NOD mice. In the present study, we examined the role of the T cell in the development of insulitis and overt diabetes in NOD mice using NOD athymic and euthymic congenic mice. None of the NOD athymic mice developed insulitis at 9 weeks of age or overt diabetes up to 30 weeks of age. In contrast, NOD euthymic littermates showed almost the same incidences of insulitis and overt diabetes as those of NOD mice. These observations suggest that T cells are essential for the development of insulitis and overt diabetes in NOD mice.  相似文献   

13.
It has been proposed that the development of diabetic nephropathy is caused in large part by oxidative stress. We previously showed that continuous exposure of mice to low-dose-rate γ radiation enhances antioxidant activity. Here, we studied the ameliorative effect of continuous whole-body irradiation with low-dose-rate γ rays on diabetic nephropathy. Ten-week-old female db/db mice, an experimental model for type II diabetes, were irradiated with low-dose-rate γ rays from 10?weeks of age throughout their lives. Nephropathy was studied by histological observation and biochemical analysis of serum and urine. Antioxidant activities in kidneys were determined biochemically. Continuous low-dose-rate γ radiation significantly increases life span in db/db mice. Three of 24 irradiated mice were free of glucosuria after 80?weeks of irradiation. Histological studies of kidney suggest that low-dose irradiation increases the number of normal capillaries in glomeruli. Antioxidant activities of superoxide dismutase, catalase and glutathione are significantly increased in kidneys of irradiated db/db mice. Continuous low-dose-rate γ irradiation ameliorates diabetic nephropathy and increases life span in db/db mice through the activation of renal antioxidants. These findings have noteworthy implications for radiation risk estimation of non-cancer diseases as well as for the clinical application of low-dose-rate γ radiation for diabetes treatment.  相似文献   

14.
Chemically-induced diabetic mice and spontaneously diabetic NOD mice have been valuable as recipients for experimental islet transplantation. However, their maintenance often requires parenteral insulin. Diabetogenic chemicals can be cytotoxic to the host’s immune system and to other organs some of which are often used as the transplant site. Procurement of diabetic cohorts in the NOD mouse is problematic due to variability in the age of disease onset. We show that RIP-Kb mice, which spontaneously develop non-immune diabetes due to over-expression of the H-2Kb heavy chain in beta cells, offer many advantages as islet transplant recipients. Diabetes is predictable with a relatively narrow range of onset (4 wk) and blood glucose levels (23.0± 4.0 mmol/l for 39 males at 6 weeks of age). The diabetes is mild enough so that most diabetic mice can be maintained to 40 weeks of age without parenteral insulin. This consistency of diabetes avails that outcomes of intervention can be interpreted with confidence.  相似文献   

15.
The catalase activities in blood and organs of the acatalasemic (C3H/AnLCsbCsb) mouse of the C3H strain are lower than those of the normal (C3H/AnLCsaCsa) mouse. We conducted a study to examine changes in the activities of antioxidant enzymes, such as catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPX), the total gluathione content, and the lipid peroxide level in the brain, which is more sensitive to oxidative stress than other organs, at 3, 6, or 24 hr following X-ray irradiation at doses of 0.25, 0.5, or 5.0 Gy to the acatalasemic and the normal mice. No significant change in the lipid peroxide level in the acatalasemic mouse brain was seen under non-irradiation conditions. However, the acatalasemic mouse brain was more damaged than the normal mouse brain by excessive oxygen stress, such as a high-dose (5.0 Gy) X-ray. On the other hand, we found that, unlike 5.0 Gy X-ray, a relatively low-dose (0.5 Gy) irradiation specifically increased the activities of both catalase and GPX in the acatalasemic mouse brain making the activities closer to those in the normal mouse brain. These findings may indicate that the free radical reaction induced by the lack of catalase is more properly neutralized by low dose irradiation.  相似文献   

16.
Otsuka, K., Koana, T., Tomita, M., Ogata, H. and Tauchi, H. Rapid Myeloid Recovery as a Possible Mechanism of Whole-Body Radioadaptive Response. Radiat. Res. 170, 307- 315 (2008).We investigated the mechanism underlying the radioadaptive response that rescues mice from hematopoietic failure. C57BL/6 mice were irradiated with low-dose acute X rays (0.5 Gy) for priming 2 weeks prior to a high-dose (6 Gy) challenge irradiation. Bone marrow cells, erythrocytes and platelets in low-dose-preirradiated mice showed earlier recovery after the challenge irradiation than those in mice subjected only to the challenge irradiation. This suggests that hematopoiesis is enhanced after a challenge irradiation in preirradiated mice. The rapid recovery of bone marrow cells after the challenge irradiation was consistent with the proliferation of hematopoietic progenitors expressing the cell surface markers Lin(-), Sca-1(-) and c-Kit(+) in low-dose-preirradiated mice. A subpopulation of myeloid (Mac-1(+)/Gr-1(+)) cells, which were descendants of Lin(-), Sca-1(-) and c-Kit(+) cells, rapidly recovered in the bone marrow of low-dose-preirradiated mice, whereas the number of B-lymphoid (CD19(+)/B220(+)) cells did not show a statistically significant increase. Plasma cytokine profiles were analyzed using antibody arrays, and results indicated that the concentrations of several growth factors for myelopoiesis after the challenge irradiation were considerably increased by low-dose preirradiation. The rapid recovery of erythrocytes and platelets but not leukocytes was observed in the peripheral blood of preirradiated mice, suggesting that low-dose preirradiation triggered the differentiation to myelopoiesis. Thus the adaptive response induced by low-dose preirradiation in terms of the recovery kinetics of the number of hematopoietic cells may be due to the rapid recovery of the number of myeloid cells after high-dose irradiation.  相似文献   

17.
The caspase-3-generated RasGAP N-terminal fragment (fragment N) inhibits apoptosis in a Ras-PI3K-Akt-dependent manner. Fragment N protects various cell types, including insulin-secreting cells, against different types of stresses. Whether fragment N exerts a protective role during the development of type 1 diabetes is however not known. Non-obese diabetic (NOD) mice represent a well-known model for spontaneous development of type 1 diabetes that shares similarities with the diseases encountered in humans. To assess the role of fragment N in type 1 diabetes development, a transgene encoding fragment N under the control of the rat insulin promoter (RIP) was back-crossed into the NOD background creating the NOD-RIPN strain. Despite a mosaic expression of fragment N in the beta cell population of NOD-RIPN mice, islets isolated from these mice were more resistant to apoptosis than control NOD islets. Islet lymphocytic infiltration and occurrence of a mild increase in glycemia developed with the same kinetics in both strains. However, the period of time separating the mild increase in glycemia and overt diabetes was significantly longer in NOD-RIPN mice compared to the control NOD mice. There was also a significant decrease in the number of apoptotic beta cells in situ at 16 weeks of age in the NOD-RIPN mice. Fragment N exerts therefore a protective effect on beta cells within the pro-diabetogenic NOD background and this prevents a fast progression from mild to overt diabetes.  相似文献   

18.
摘要 目的:探讨达格列净对2型糖尿病小鼠心、肾的保护作用。方法:选取24只6周龄的雄性2型糖尿病模型(C57BLKS/J-leprdb/leprdb, db/db)小鼠,随机等分成达格列净投药组和对照组,另选取同周龄雄性非糖尿病的(C57BLKS/J-leprdb/+, db/m)小鼠12只作为正常组。检测小鼠血糖后,从第7周开始对投药组小鼠进行为期10周的达格列净用药,其余小鼠给予同等计量生理盐水,期间定期监测血糖、血压、尿糖以及各项代谢相关指标。投药结束后分离心脏及肾脏组织,组织切片进行染色观察。结果:与对照组相比,投药组达格列净用药后第1周血糖值显著降低(P < 0.01),用药9周后糖耐量测试结果显示血糖值几乎接近正常小鼠组水平,但各组间血压值无明显差异,心肌间质纤维化、炎性细胞浸润、氧化应激水平明显下降,同时肾小球硬化、炎性细胞浸润和氧化应激程度明显得到改善。结论:达格列净用药不仅能显著降低2型糖尿病模型小鼠血糖,还能有效抑制糖尿病引起的心血管及肾损害。  相似文献   

19.
Exposing mice to 0.5 Gy X rays 2 weeks before lethal irradiation has been reported to induce marked radioresistance and to rescue them from hematopoietic death. Here we examined effects of the 0.5-Gy pre-exposure on hematological changes in C57BL mice that were lethally irradiated with 6.5 Gy X rays. Approximately 77% of pre-exposed mice survived 30 days after this irradiation, whereas 80% of mice that did not receive this pre-exposure died by day 20. However, regardless of the pre-exposure, peripheral blood cell counts decreased markedly by day 3 and reached a nadir at day 20. CFU-S in femur and CFU-GM in spleen had started to recover at day 10 and 14, respectively, but recovery of functional peripheral blood cells occurred later. The effect of pre-exposure on survival was altered by OK432, a bioresponse modifier; the effect depended on the timing of its administration. OK432 given 2 days before 0.5 Gy enhanced the protective effect of pre-exposure, resulting in the survival of 97% of the mice. In contrast, injection of OK432 1 day before or 2 days after pre-exposure led to 100% mortality. Thus the survival-promoting effect of 0.5 Gy could be altered by OK432. The OK432-induced changes in the survival of mice could not be attributed solely to hematological changes, as shown by blood cell counts and progenitor cell contents. These results suggest that radioresistance induced by pre-exposure to 0.5 Gy X rays is not stable, but rather varies with the physiological conditions, and can be modulated by factors such as OK432.  相似文献   

20.
Oxidative stress is implicated as an important mechanism by which diabetes causes nephropathy. Oxykine is the cantaloupe melon extract rich in vegetal superoxide dismutase covered by polymeric films of wheat matrix gliadin. In this study, we examined whether chronic oral administration of oxykine could prevent the progression of diabetic nephropathy induced by oxidative stress using preclinical rodent model of type 2 diabetes. We used female db/db mice and their non-diabetic db/m littermates. The mice were divided into the following three groups: non-diabetic db/m; diabetic db/db, and diabetic db/db treated with oxykine. Blood glucose level, body weight, urinary albumin, and urinary 8-hydroxydeoxyguanosine (8-OHdG) were measured during the experiments. Histological and 8-OHdG immunohistochemical studies were preformed on 12 weeks from the beginning of treatment. After 12 weeks of treatment, the levels of blood glucose and the body weight were not significantly different between the oxykine-treated group and the non-treated db/db group, however both groups kept significantly high levels rather than db/m mice. The relative mesangial area calculated by mesangial area/total glomerular area ratio was significantly ameliorated in the oxykine treated group compared with non-treated db/db group. The increases in urinary albumin and 8-OHdG at 12 weeks of treatment were significantly inhibited by chronic treatment with oxykine. The 8-OHdG immunoreactive cells in the glomeruli of non-treated db/db mice were more numerous than that of oxykine-treated db/db mice. In this study, treatment of oxykine ameliorated the progression and acceleration of diabetic nephropathy for rodent model of type 2 diabetes. These results indicated that the oxykine reduced the diabetes-induced oxidative stress and renal mesangial cell injury. In conclusion, oxykine might be a novel approach for the prevention of diabetes nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号