首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The Smad2 Mad homology 2 (MH2) domain binds to a diverse group of proteins which do not share a common sequence motif. We have used NMR to investigate the structure of one of these interacting proteins, the Smad binding domain (SBD) of Smad anchor for receptor activation (SARA). Our results indicate that the unbound SBD is highly disordered and forms no stable secondary or tertiary structures. Additionally we have used fluorescence binding studies to study the interaction between the MH2 domain and SBD and find that no region of the SBD dominates the interaction between the MH2 and the SBD. Our results are consistent with a series of hydrophobic patches on the MH2 that are able to recognize disordered regions of proteins. These findings elucidate a mechanism by which a single domain (MH2) can specifically recognize a diverse set of proteins which are unrelated by sequence, lead to a clearer picture of how MH2 domains function in the transforming growth factor-beta-signaling pathway and suggest possible mechanisms for controlling interactions with MH2 domains.  相似文献   

4.
5.
6.
7.
8.
The Smad anchor for receptor activation (SARA) protein is a binding partner for Smad2/3 that plays an important role in the fibrotic promoting signaling pathway initiated by transforming growth factor-β1 (TGF-β1). The C-terminal 665-750 aa of SARA comprises the Smad-binding domain (SBD). By direct interaction through the SBD, SARA inhibits Smad2/3 phosphorylation and blocks the interaction between Smad2/3 and Smad4, thereby restrains the process of fibrosis. In this study, we constructed a SARA peptide aptamer based on the SBD sequence. The recombinant SARA aptamer, fused with a protein transduction domain (PTD-SARA), was cloned, purified from E. coli, and characterized for the first time. The full-length PTD-SARA coding sequence, created with E. coli favored codons, was cloned into a pQE-30 vector, and the recombinant plasmid was transformed into an M15 strain. After Isopropyl β-D-1-Thiogalactopyranoside (IPTG) induction and Ni(2+) affinity purification, recombinant PTD-SARA was further identified by immunoblotting and protein N-terminal sequencing. Epifluorescence microscopy revealed that the recombinant PTD-SARA was transferred into the cytoplasm and nucleus more efficiently than SARA. Moreover, the recombinant PTD-SARA was found to up-regulate the level of E-cadherin and down-regulate the levels of α-SMA and phospho-Smad3 more efficiently than SARA (P < 0.05). Our work explored a method to obtain recombinant PTD-SARA protein. The recombinant PTD-SARA fusion protein could enter HK2 cells (an immortalized proximal tubule epithelial cell line) more efficiently than the SARA protein and reverse the renal epithelial-to-mesenchymal transdifferentiation process that was induced by TGF-β1 more effectively than the SARA protein. Recombinant PDT-SARA is likely to be a potential candidate for clinical prevention and treatment of renal fibrosis.  相似文献   

9.
10.
Interleukin-2 tyrosine kinase (Itk), is a T-cell specific tyrosine kinase of the Tec family. We have examined a novel intermolecular interaction between the SH3 and SH2 domains of Itk. In addition to the interaction between the isolated domains, we have found that the dual SH3/SH2 domain-containing fragment of Itk self-associates in a specific manner in solution. Tec family members contain the SH3, SH2 and catalytic domains common to many kinase families but are distinguished by a unique amino-terminal sequence, which contains a proline-rich stretch. Previous work has identified an intramolecular regulatory association between the proline-rich region and the adjacent SH3 domain of Itk. The intermolecular interaction between the SH3 and SH2 domains of Itk that we describe provides a possible mechanism for displacement of this intramolecular regulatory sequence, a step that may be required for full Tec kinase activation. Additionally, localization of the interacting surfaces on both the SH3 and SH2 domains by chemical shift mapping has provided information about the molecular details of this recognition event. The interaction involves the conserved aromatic binding pocket of the SH3 domain and a newly defined binding surface on the SH2 domain. The interacting residues on the SH2 domain do not conform to the consensus motif for an SH3 proline-rich ligand. Interestingly, we note a striking correlation between the SH2 residues that mediate this interaction and those residues that, when mutated in the Tec family member Btk, cause the hereditary immune disorder, X-linked agamaglobulinemia.  相似文献   

11.
12.
13.
14.
15.
Mh1 domain of Smad is a degraded homing endonuclease   总被引:2,自引:0,他引:2  
  相似文献   

16.
17.
18.
Smad proteins undergo rapid nuclear translocation upon stimulation by transforming growth factor-beta (TGFbeta) and in so doing transduce the signal into the nucleus. In this report we unraveled nuclear import mechanisms of Smad3 and Smad4 that are dependent on their interaction with FG-repeat-containing nucleoporins such as CAN/Nup214, without the involvement of importin molecules that are responsible for most of the known nuclear import events. A surface hydrophobic corridor within the MH2 domain of Smad3 is critical for association with CAN/Nup214 and nuclear import, whereas Smad4 interaction with CAN/Nup214, and nuclear import requires structural elements present only in the full-length Smad4. As exemplified by the different susceptibility to inhibition of import by cytoplasmic retention factor SARA (Smad anchor for receptor activation), such utilization of distinct domains for nuclear import of Smad3 and Smad4 suggests that nuclear transport of Smad3 and Smad4 is subject to control by different retention factors.  相似文献   

19.
20.
Ottesen JJ  Huse M  Sekedat MD  Muir TW 《Biochemistry》2004,43(19):5698-5706
Transforming growth factor-beta (TGF-beta) signaling regulates a wide range of cellular processes. Aberrant TGF-beta signaling has been implicated in various disease states in humans. A key element in this signaling pathway is phosphorylation of R-Smads such as Smad2 at the last two serine residues of the C-terminal sequence CSSXS (residues 463-467 in Smad2) by the TbetaRI receptor kinase. Phosphorylation results in the release of the R-Smad from the membrane-anchored protein SARA, binding to the co-mediator protein Smad4, translocation into the nucleus, and regulation of target gene expression. Expressed protein ligation was used to probe the contribution of the individual phosphate groups to Smad2 oligomerization and phosphorylation by TbetaRI. Phosphorylation at both positions was required to generate a stable homotrimer; however, the driving force for Smad2 self-association is provided by pSer465. Additionally, SARA was found to modulate the self-association of partially phosphorylated Smad2, which suggests an added role for this protein in preventing premature release of a monophosphorylated substrate from the receptor complex. In related studies, prephosphorylation of Smad2 at Ser465 was found to significantly increase the rate of phosphorylation at Ser467, suggesting that there may be specific recognition determinants within the kinase for the monophosphorylated intermediate. This information was exploited to design an improved peptide substrate for TbetaRI, which may prove valuable in the design of inhibitors of the TGF-beta pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号