首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mastrangelo P  Westaway D 《Gene》2001,275(1):1-18
The prion protein gene, Prnp, encodes PrP(Sc), the major structural component of prions, infectious pathogens causing a number of disorders including scrapie and bovine spongiform encephalopathy (or BSE). Missense mutations in the human Prnp gene cause inherited prion diseases such as familial Creutzfeldt-Jakob disease. In uninfected animals Prnp encodes a glycophosphatidylinositol (GPI)-anchored protein denoted PrP(C) and in prion infections PrP(C) is converted to PrP(Sc) by templated refolding. Though Prnp is conserved in mammalian species, attempts to verify interactions of putative PrP binding proteins by genetic means have proven frustrating and the ZrchI and Npu lines of Prnp gene-ablated mice (Prnp(0/0) mice) lacking PrP(C) remain healthy throughout development. This indicates that PrP(C) serves a function that is not apparent in a laboratory setting or that other molecules have overlapping functions. Current possibilities involve shuttling or sequestration of synaptic Cu(II) via binding to N-terminal octapeptide residues and/or signal transduction involving the fyn kinase. A new point of entry into the issue of prion protein function has emerged from identification of a paralogue, Prnd, with 24% coding sequence identity to Prnp. Prnd lies downstream of Prnp and encodes the doppel (Dpl) protein. Like PrP(C), Dpl is presented on the cell surface via a GPI anchor and has three alpha-helices: however, it lacks the conformationally plastic and octapeptide repeat domains present in its well-known relative. Interestingly, Dpl is overexpressed in the Ngsk and Rcm0 lines of Prnp(0/0) mice via intergenic splicing events. These lines of Prnp(0/0) mice exhibit ataxia and apoptosis of cerebellar cells, indicating that ectopic synthesis of Dpl protein is toxic to central nervous system neurons: this inference has now been confirmed by the construction of transgenic mice expressing Dpl under the direct control of the PrP promoter. Remarkably, Dpl-programmed ataxia is rescued by wild-type Prnp transgenes. The interaction between the Prnp and Prnd genes in mouse cerebellar neurons may have a physical correlate in competition between Dpl and PrP(C) within a common biochemical pathway that when mis-regulated leads to apoptosis.  相似文献   

2.
3.
The Prnd gene encodes a homolog of the cellular prion protein (PrP(C)) called doppel (Dpl). Up-regulation of Prnd mRNA in two distinct lines of PrP gene ablated (Prnp(0/0)) mice, designated Rcm0 and Ngsk, is associated with death of Purkinje cells. Using recombinant Dpl expressed in Escherichia coli and mouse neuroblastoma cells we demonstrate that wild type (wt) Dpl, like PrP(C), adopts a predominantly alpha-helical conformation, forms intramolecular disulfide bonds, has two N-linked oligosaccharides, and is presented on the cell surface via a glycosylphosphatidylinositol anchor. Dpl protein was detected in testis of wt mice. Using Triton X-114 phase partitioning to enrich for glycosylphosphatidylinositol-anchored proteins, Dpl was detected in brain samples from Rcm0 Prnp(0/0) mice but was absent in equivalent samples from wt mice and ZrchI Prnp(0/0) mice, indicating that ectopic expression of this protein may cause cerebellar pathology in Rcm0 mice. Biochemical and structural similarities between PrP(C) and Dpl documented here parallel the observation that ataxic Ngsk Prnp(0/0) mice can be rescued by overexpression of wild-type PrP transgenes, and suggest that cell surface PrP(C) can antagonize the toxic effect of Dpl expressed in the central nervous system.  相似文献   

4.
5.
Accumulating evidence has suggested that prion protein (PrP) is neuroprotective and that a PrP-like protein/Doppel (PrPLP/Dpl) is neurotoxic. A line of PrP-deficient mice, Ngsk Prnp0/0, ectopically expressing PrPLP/Dpl in neurons, exhibits late-onset ataxia because of Purkinje cell death that is prevented by a transgene encoding wild-type mouse PrP. To elucidate the mechanisms of neurodegeneration in these mice, we introduced five types of PrP transgene, namely one heterologous hamster, two mouse/hamster chimeric genes, and two mutants, each of which encoded PrP lacking residues 23-88 (MHM2.del23-88) or with E199K substitution (Mo.E199K), into Ngsk Prnp0/0 mice. Only MHM2.del23-88 failed to rescue the mice from the Purkinje cell death. The transgenic mice, MHM2.del23-88/Ngsk Prnp0/0, expressed several times more PrP than did wild-type (Prnp+/+) mice and PrPLP/Dpl at an equivalent level to Ngsk Prnp0/0 mice. Little difference was observed in the pathology and onset of ataxia between Ngsk Prnp0/0 and MHM2.del23-88/Ngsk Prnp0/0. No detergent-insoluble PrPLP/Dpl was detectable in the central nervous system of Ngsk Prnp0/0 mice even after the onset of ataxia. Our findings provide evidence that the N-terminal residues 23-88 of PrP containing the unique octapeptide-repeat region is crucial for preventing Purkinje cell death in Prnp0/0 mice expressing PrPLP/Dpl in the neuron.  相似文献   

6.
Only 10% of human transmissible spongiform encephalopathies (TSEs) are associated with mutations of the Prnp region encoding the prion protein (PrP). Recently, the murine PrP-like protein doppel (Dpl) was described and was shown to be overexpressed in certain strains of PrP knockout mice and to cause neurological diseases such as ataxia and Purkinje cell loss. To answer the question of whether there are any polymorphisms within the PrP-like protein gene (Prnd) that might cause or be involved in the development of TSEs, we investigated the complete open reading frame of the human Prnd gene from 58 patients who had died of genetic or sporadic Creutzfeldt-Jakob disease (CJD), Alzheimer's disease or other neurological disorders and from 111 controls. We found five new polymorphisms and one frame shift mutation. One silent polymorphism, which does not lead to an altered amino acid sequence, was also observed. Statistical analysis revealed a significant difference in the distribution of the Prnd genotype at codon 174 between sporadic CJD patients and healthy controls.  相似文献   

7.
Absence of the prion protein homologue Doppel causes male sterility   总被引:12,自引:0,他引:12  
The agent that causes prion diseases is thought to be identical with PrP(Sc), a conformer of the normal prion protein PrP(C). PrP(C)-deficient mice do not exhibit major pathologies, perhaps because they express a protein termed Dpl, which shares significant biochemical and structural homology with PrP(C). To investigate the physiological function of Dpl, we generated mice harbouring a homozygous disruption of the Prnd gene that encodes Dpl. Dpl deficiency did not interfere with embryonic and postnatal development, but resulted in male sterility. Dpl protein was expressed at late stages of spermiogenesis, and spermatids of Dpl mutants were reduced in numbers, immobile, malformed and unable to fertilize oocytes in vitro. Mechanical dissection of the zona pellucida partially restored in vitro fertilization. We conclude that Dpl regulates male fertility by controlling several aspects of male gametogenesis and sperm-egg interaction.  相似文献   

8.
BACKGROUND: Some lines of mice homozygous for a disrupted prion protein gene (Prnp), including Ngsk Prnp(0/0) mice, exhibit Purkinje cell degeneration as a consequence of the ectopic overexpression of the downstream gene for prion protein-like protein (PrPLP/Dpl) in the brain, but others, such as Zrch I Prnp(0/0) mice, show neither the neurodegeneration nor the expression of PrPLP/Dpl. In the present study, we found that Ngsk Prnp(0/0), but not Zrch I Prnp(0/0) mice, developed gliosis involving both astrocytes and microglia in the brain. MATERIALS AND METHODS: The brains from wild-type (Prnp(+/+)), Ngsk Prnp(0/0), Zrch I Prnp(0/0), and reconstituted Ngsk Prnp(0/0) mice carrying a mouse PrP transgene, designated Tg(P) Ngsk Prnp(0/0) mice, were subjected into Northern blotting and in situ hybridization using probes of glial fibrillary acidic protein (GFAP) and lysozyme M (LM) specific for astrocytes and microglia, respectively. Immunohistochemistry was also performed on the brain sections using anti-GFAP and anti-F4/80 antibodies. RESULTS: Northern blotting demonstrated upregulated expression of the genes for GFAP and LM in the brains of Ngsk Prnp(0/0), but not in Zrch I Prnp(0/0) mice. A transgene for normal mouse PrP(C) successfully rescued Ngsk Prnp(0/0) mice from the glial activation. In situ hybridization and immunohistochemistry revealed activated astrocytes and microglia mainly in the white matter of both the forebrains and cerebella. In contrast, there was no evidence of neuronal injury except for the Purkinje cell degeneration. Moreover, the glial cell activation was notable well before the onset of the Purkinje cell degeneration. CONCLUSIONS: These findings strongly suggest that ectopic PrPLP/Dpl in the absence of PrP(C) is actively involved in the glial-cell activation in the brain.  相似文献   

9.
It has been difficult to reconcile the absence of pathology and apparently normal behavior of mice lacking prion protein (PrP), referred to as Prnp(0/0) mice, with a mechanism of prion pathogenesis involving progressive loss of PrP(C)-mediated neuroprotection. However, here we report that Prnp(0/0) mice exhibit significant age-related defects in motor coordination and balance compared with mice expressing wild type Prnp on a syngeneic background, and that the brains of behaviorally-impaired Prnp(0/0) mice display the cardinal neuropathological hallmarks of spongiform pathology and reactive astrocytic gliosis that normally accompany prion disease. Consistent with the appearance of cerebellar ataxia as an early symptom in patients with Gerstmann-Str?ussler-Scheinker syndrome (GSS), an inherited form of human prion disease, motor coordination and balance defects manifested in a transgenic (Tg) mouse model of GSS considerably earlier than the onset of end-stage neurodegenerative disease. Our results are consistent with a mechanism in which loss of normal PrP(C) function is an important pathological component of prion diseases.  相似文献   

10.
11.
Prion protein (PrP) binds copper and exhibits superoxide dismutase-like activity, while the roles of PrP in copper homeostasis remain controversial. Using Zeeman graphite furnace atomic absorption spectroscopy, we quantified copper levels in immortalized PrP gene (Prnp)-deficient neuronal cells transfected with Prnp and/or Prnd, which encodes PrP-like protein (PrPLP/Dpl), in the presence or absence of oxidative stress induced by serum deprivation. In the presence of serum, copper levels were not significantly affected by the expression of PrP and/or PrPLP/Dpl, whereas serum deprivation induced a decrease in copper levels that was inhibited by PrP but not by PrPLP/Dpl. The inhibitory effect of PrP on the decrease of copper levels was prevented by overexpression of PrPLP/Dpl. These findings indicate that PrP specifically stabilizes copper homeostasis, which is perturbed under oxidative conditions, while PrPLP/Dpl overexpression prevents PrP function in copper homeostasis, suggesting an interaction of PrP and PrPLP/Dpl and distinct functions between PrP and PrPLP/Dpl on metal homeostasis. Taken together, these results strongly suggest that PrP, in addition to its antioxidant properties, plays a role in stabilizing cellular copper homeostasis under oxidative conditions.  相似文献   

12.
Scrapie and Creutzfeldt-Jakob disease are transmissible, degenerative neurological diseases caused by prions. Considerable evidence argues that prions contain protease-resistant sialoglycoproteins, designated PrPSc, encoded by a cellular gene. The prion protein (PrP) gene also encodes a normal cellular protein designated PrPC. We established clonal cell lines which support the replication of mouse scrapie or Creutzfeldt-Jakob disease prions. Mouse neuroblastoma N2a cells were exposed to mouse scrapie prions and subsequently cloned. After limited proteinase K digestion, three PrP-immunoreactive proteins with apparent molecular masses ranging between 20 and 30 kilodaltons were detected in extracts of scrapie-infected N2a cells by Western (immuno-) blotting. The authenticity of these PrPSc molecules was established by using monospecific antiserum raised against a synthetic peptide corresponding to a portion of the prion protein. Those clones synthesizing PrPSc molecules possessed scrapie prion infectivity as measured by bioassay; clones without PrPSc failed to demonstrate infectivity. Detection of PrPSc molecules in scrapie-infected N2a cells supports the contention that PrPSc is a component of the infectious scrapie particle and opens new approaches to the study of prion diseases.  相似文献   

13.
The prion protein family: diversity, rivalry, and dysfunction   总被引:3,自引:0,他引:3  
The prion gene family currently consists of three members: Prnp which encodes PrP(C), the precursor to prion disease associated isoforms such as PrP(Sc); Prnd which encodes Doppel, a testis-specific protein involved in the male reproductive system; and Sprn which encodes the newest PrP-like protein, Shadoo, which is expressed in the CNS. Although the identification of numerous candidate binding partners for PrP(C) has hinted at possible cellular roles, molecular interpretations of PrP(C) activity remain obscure and no widely-accepted view as to PrP(C) function has emerged. Nonetheless, studies into the functional interrelationships of prion proteins have revealed an interesting phenomenon: Doppel is neurotoxic to cerebellar cells in a manner which can be blocked by either PrP(C) or Shadoo. Further examination of this paradigm may help to shed light on two prominent unanswered questions in prion biology: the functional role of PrP(C) and the neurotoxic pathways initiated by PrP(Sc) in prion disease.  相似文献   

14.
Although the cellular form of the prion protein (PrPC) is critical for the development of prion disease through its conformational conversion into the infectious form (PrPSc), the physiological role of PrPC is less clear. Using alkaline single-cell gel electrophoresis (the Comet assay), we show that expression of PrPC protects human neuroblastoma SH-SY5Y cells against DNA damage under basal conditions and following exposure to reactive oxygen species, either hydroxyl radicals following exposure to Cu2+ or Fe2+ or singlet oxygen following exposure to the photosensitizer methylene blue and white light. Cells expressing either PrPDeltaoct which lacks the octapeptide repeats or the prion-disease-associated mutants A116V or PG14 had increased levels of DNA damage compared to cells expressing PrPC. In PrPSc-infected mouse ScN2a cells there was a significant increase in DNA damage over noninfected N2a cells (median tail DNA 2.87 and 7.33%, respectively). Together, these data indicate that PrPC has a critical role to play in protecting cells against reactive-oxygen-species-mediated DNA damage; a function which requires the octapeptide repeats in the protein, is lost in disease-associated mutants of the protein or upon conversion to PrPSc, and thus provide further support for the neuroprotective role for PrPC.  相似文献   

15.
Previous studies have shown that cellular prion protein (PrP(C)) plays anti-apoptotic and antioxidative role against cell death induced by serum-deprivation (SDP) in an immortalized prion protein gene-deficient neuronal cell line derived from Rikn prion protein (PrP) gene-deficient (Prnp(-/-)) mice, which ectopically produce excess Doppel (Dpl) (PrP-like glycoprotein). To investigate whether PrP(C) inhibits apoptotic neuronal cell death without Dpl, an immortalized cell line was established from the brain of ZrchI Prnp(-/-) mice, which do not show ectopic expression of Dpl. The results using a ZrchI neuronal Prnp(-/-) cell line (NpL2) showed that PrP(C) potently inhibited SDP-induced apoptotic cell death. Furthermore, PrP(C) expression enhanced the superoxide dismutase (SOD) activity in NpL2 cells. These results indicate that Dpl production did not affect anti-apoptotic and anti-oxidative functions of PrP, suggesting that PrP(C) may be directly correlated with protection against oxidative stress.  相似文献   

16.
BACKGROUND: It has been proposed that the prion, the infectious agent of transmissible spongiform encephalopathies, is PrPSc, a post-translationally modified form of the normal host protein PrPC. We showed previously that mice devoid of PrPC (Prn-p0/0) are completely resistant to scrapie. We now report on the unexpected response of heterozygous (Prn-p0/+) mice to scrapie infection. MATERIALS AND METHODS: Prn-p0/+, Prn-p0/0 and Prn-p+/+ mice were obtained from crosses of Prn-p0/+ mice. Mice were inoculated intracerebrally with mouse-adapted scrapie agent and the clinical progression of the disease recorded. Mice were sacrificed at intervals, PrPSc was determined as protease-resistant PrP and the prion titer by the incubation time assay. RESULTS: Prn-p0/+ mice, which have about half the normal level of PrPC in their brains, show enhanced resistance to scrapie, as manifested by a significant delay in onset and progression of clinical disease. However, while in wild type animals an increase in prion titer and PrPSc levels is followed within weeks by scrapie symptoms and death, heterozygous Prn-p0/+ mice remain free of symptoms for many months despite similar levels of scrapie infectivity and PrPSc. CONCLUSIONS: Our findings extend previous reports showing an inverse relationship between PrP expression level and incubation time for scrapie. However, contrary to expectation, overall accumulation of PrPSc and prions to a high level do not necessarily lead to clinical disease. These findings raise the question whether high titers of prion infectivity could also persist for long periods under natural circumstances in the absence of clinical symptoms.  相似文献   

17.
Evidence for synthesis of scrapie prion proteins in the endocytic pathway.   总被引:28,自引:0,他引:28  
Infectious scrapie prions are composed largely, if not entirely, of an abnormal isoform of the prion protein (PrP) which is designated PrPSc. A chromosomal gene encodes both the cellular prion protein (PrPC) as well as PrPSc. Pulse-chase experiments with scrapie-infected cultured cells indicate that PrPSc is formed by a post-translational process. PrP is translated in the endoplasmic reticulum, modified as it passes through the Golgi, and is transported to the cell surface. Release of nascent PrP from the cell surface by phosphatidylinositol-specific phospholipase C or hydrolysis with dispase prevented PrPSc synthesis. At 18 degrees C, the synthesis of PrPSc was inhibited under conditions that other investigators report a blockage of endosomal fusion with lysosomes. Our results suggest that PrPSc synthesis occurs after PrP transits from the cell surface. Whether all of the PrP molecules have an equal likelihood to be converted into PrPSc or only a distinct subset is eligible for conversion remains to be established. Identifying the subcellular compartment(s) of PrPSc synthesis should be of considerable importance in defining the molecular changes that distinguish PrPSc from PrPC.  相似文献   

18.
A conformational transition between the normal cellular prion protein (PrPC) and the beta-sheet-rich pathological isoform (PrPSc) is a central event in the pathogenesis of spongiform encephalopathies. The prion infectious agent seems to contain mainly, if not exclusively, PrPSc, which has the ability to propagate its abnormal conformation by transforming the host PrPC into the pathological isoform. We have developed an in vitro system to induce the PrPC --> PrPSc conversion by incubating a cell-lysate containing mouse PrPC with partially purified mouse PrPSc. After 48 h of incubation with a 10-fold molar excess of PrPSc, the cellular protein acquired PK-resistance resembling a PrPSc-like state. Time course experiments suggest that the conversion follows a stepwise mechanism involving kinetic intermediates. The conversion was induced by PrPSc extracted from mice infected with two different prion strains, each propagating its characteristic Western blot profile. The latter results and the fact that all the cellular components are present in the conversion reaction suggest that PrPC-PrPSc interaction is highly specific and required for the conversion. No transformation was observed under the same conditions using purified proteins without cell-lysate. However, when PrPC-depleted cell-lysate was added to the purified proteins the conversion was recovered. These findings provide direct evidence for the participation of a chaperone-like activity involved in catalyzing the conversion of PrPC into PrPSc.  相似文献   

19.
Prions cause transmissible and genetic neurodegenerative diseases. Infectious prion particles are composed largely, if not entirely, of an abnormal isoform of the prion protein (PrPSc), which is encoded by a chromosomal gene. Although the PrP gene is single copy, transgenic mice with both alleles of the PrP gene ablated develop normally. A post-translational process, as yet unidentified, converts the cellular prion protein (PrPC) into PrPSc. Scrapie incubation times, neuropathology and prion synthesis in transgenic mice are controlled by the PrP gene. Mutations in this gene are genetically linked to the development of neurodegeneration. Transgenic mice expressing mutant PrP spontaneously develop neurological dysfunction and spongiform neuropathology. Future investigations of prion diseases using molecular biological and genetic approaches promise to yield much new information about these once enigmatic disorders.  相似文献   

20.
The PrP-like Doppel (Dpl) protein causes apoptotic death of cerebellar neurons in transgenic mice, a process prevented by expression of the wild type (wt) cellular prion protein, PrP(C). Internally deleted forms of PrP(C) resembling Dpl such as PrPDelta32-121 produce a similar PrP(C)-sensitive pro-apoptotic phenotype in transgenic mice. Here we demonstrate that these phenotypic attributes of wt Dpl, wt PrP(C), and PrPDelta132-121 can be accurately recapitulated by transfected mouse cerebellar granule cell cultures. This system was then explored by mutagenesis of the co-expressed prion proteins to reveal functional determinants. By this means, neuroprotective activity of wt PrP(C) was shown to be nullified by a deletion of the N-terminal charged region implicated in endocytosis and retrograde axonal transport (PrPDelta23-28), by deletion of all five octarepeats (PrPDelta51-90), or by glycine replacement of four octarepeat histidine residues required for selective binding of copper ions (Prnp"H/G"). In the case of Dpl, overlapping deletions defined a requirement for the gene interval encoding helices B and B' (DplDelta101-125). These data suggest contributions of copper binding and neuronal trafficking to wt PrP(C) function in vivo and place constraints upon current hypotheses to explain Dpl/PrP(C) antagonism by competitive ligand binding. Further implementation of this assay should provide a fuller understanding of the attributes and subcellular localizations required for activity of these enigmatic proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号