首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen peroxide activation of MMb with and without the presence of BSA gave rise to rapid formation of hyper-valent myoglobin species, myoglobin ferryl radical (·MbFe(IV)=O) and/or ferrylmyoglobin (MbFe(IV)=O). Reduction of MbFe(IV)=O showed first-order kinetics for a 1-2 times stoichiometric excess of H2O2 to MMb while a 3-10 times stoichiometric excess of H2O2 resulted in a biphasic reaction pattern. Radical species formed in the reaction between MMb, H2O2 and BSA were influenced by [H2O2] as measured by electron spin resonance (ESR) spectroscopy and resulted in the formation of cross-linking between BSA and myoglobin which was confirmed by SDS-PAGE and subsequent amino acid sequencing. Moreover, dityrosine was formed in the initial phases of the reaction for all concentrations of H2O2. However, initially formed dityrosine was subsequently utilized in reactions employing stoichiometric excess of H2O2 to MMb. The observed breakdown of dityrosine was ascribed to additional radical species formed from the interaction between H2O2 and the hyper-valent iron-center of H2O2-activated MMb.  相似文献   

2.
The oxidation of 2-keto-4-thiomethyl butyric acid (KTBA) and methionine to ethylene has been used to evaluate generation of ferryl species or hydroxyl radicals by H2O2--activated haemproteins or free ferric ions. Hydrogen peroxide was generated by a glucose oxidase-glucose system at a rate of 1 μM/min. Free ferric in the presence of H2O2 oxidizes KTBA, and this was highly inhibited by hydroxyl radical scavengers, caeruloplasmin, superoxide dismutase (SOD) and EDTA. However, when metmyoglobin, methaemoglobin (MtHb) or horseradish peroxidase (HRP) were tested in the same model system, hydroxyl radical scavengers suppressed partially KTBA oxidation and caeruloplasmin, SOD and EDTA failed to inhibit the reaction. Cytochrome-c was found to be a weak promoter of KTBA oxidation in the presence of H2O2. Methionine was oxidized to ethylene by an active system which generates hydroxyl radicals, but not by H2O2--activated metmyoglobin. Ferric ions chelated to membranes or ADP in the presence of H2O2 generated enzymatically, initiated membranal lipid peroxidation only in the presence of ascorbic acid, and this was inhibited by EDTA. In contrast, metmyoglobin and methaemoglobin activated by H2O2 generated by the same system, initiated membranal lipid peroxidation and this was not inhibited by EDTA. It is concluded that ferryl and not HO. is the main oxidant in systems containing myoglobin and haemoglobin activated by low concentrations of H2O2.  相似文献   

3.
The addition of 25μM hydrogen peroxide to 20μM metmyoglobin produces ferryl (FeIV = O) myoglobin. Optical spectroscopy shows that the ferryl species reaches a maximum concentration (60-70% of total haem) after 10 minutes and decays slowly (hours). Low temperature EPR spectroscopy of the high spin metmyoglobin (g = 6) signal is consistent with these findings. At this low peroxide concentration there is no evidence for iron release from the haem. At least two free radicals are detectable by EPR immediately after H2O2 addition, but decay completely after ten minutes. However, a longer-lived radical is observed at lower concentrations that is still present after 90 minutes. The monohydroxamate N-methylbutyro-hydroxamic acid (NMBH) increases the rate of decay of the fenyl species. In the presence of NMBH, none of the protein-bound free radicals are detectable; instead nitroxide radicals produced by oxidation of the hydroxamate group are observed. Similar results are observed with the trihydroxamate, desferoxamine. “Ferryl myoglobin” is still able to initiate lipid peroxidation even after the short-lived protein free radicals are no longer detectable (E.S.R. Newman, C.A. Rice-Evans and M.J. Davies (1991) Biochemical and Biophysical Research Communications 179, 1414-1419). It is suggested that the longer-lived protein radicals described here may be partly responsible for this effect. The mechanism of inhibition of initiation of lipid peroxidation by hydroxamate drugs, such as NMBH, may therefore be due to reduction of the protein-derived radicals, rather than reduction of ferryl haem.  相似文献   

4.
In the present study, triphlorethol-A, a phlorotannin, was isolated from Ecklonia cava and its antioxidant properties were investigated. Triphlorethol-A was found to scavenge intracellular reactive oxygen species (ROS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, and thus prevented lipid peroxidation. The radical scavenging activity of triphlorethol-A protected the Chinese hamster lung fibroblast (V79-4) cells exposed to hydrogen peroxide (H2O2) against cell death, via the activation of ERK protein. Furthermore, triphlorethol-A reduced the apoptotic cells formation induced by H2O2. Triphlorethol-A increased the activities of cellular antioxidant enzymes like, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Hence, from the present study, it is suggestive that triphlorethol-A protects V79-4 cells against H2O2 damage by enhancing the cellular antioxidative activity.  相似文献   

5.
The reaction of H2O2 with resting metmyoglobin (MetMb), methaemoglobin (MetHb) and cytochrome-c (Cyt-c) was studied in the Soret and visible regions. The differences between the original and the final peak heights of the native haemproteins at 408 nm was found to be directly proportional to the loss of iron from the molecule. The release of iron from haemproteins was studied in a system generating H2O2 continuously at a low rate by an enzymic system, or by addition of large amounts of H2O2. Cytochrome-c, methaemoglobin and metmyoglobin during interaction with H2O2 at a concentration of 200 μM release 40%, 20% and 3%, respectively, of molecular iron after l0min. The inhibition of haem degradation and iron release by enzymatically-generated H2O2 was determined using several hydroxyl radical scavengers, reducing agents and antioxienzymes, such as superoxide dismutase, catalase and caeruloplasmin.  相似文献   

6.
Free radical formation from VP 16-213 was studied by ESR spectroscopy. Incubation of VP 16-213 with the one-electron oxidators persulphate-ferrous, myeloperoxidase (MPO)/hydrogen peroxide and horseradish peroxidase (HRP)/hydrogen peroxide readily led to the formation of a free radical. The ESR spectra obtained in the last two cases, were in perfect accord with that of a product obtained by electrochemical oxidation of VP 16-213 at +550 mV. The half-life of the free radical in 1 mM Tris (pH 7.4), 0.1 MNaClat 20°C, was 257 ± 4 s. The signal recorded on incubation with HRP/H2O2 or MPO/H2O2 did not disappear on addition of 0.3 - 1.2 mg/ml microsomal protein. From incubations with rat liver microsomes in the presence of NADPH, no ESR signals were obtained.  相似文献   

7.
In the presence of excess hydrogen peroxide. human oxyhaemoglobin and oxyleghaemoglobin from soybean root nodules cause oxidation of dimethylsulphoxide to formaldehyde. This reaction is inhibited by thiourea but not by phenylalanine. HEPES. mannitol or arginine. It is concluded that dimethylsulphoxide oxidation is not mediated by “free” hydroxyl radicals. consistent with previous conclusions that intact haemoglobin, leghaemoglobin or myoglobin molecules do not react with H2O2 to form hydroxyl radicals detectable outside the protein.  相似文献   

8.
The present work analyzes the activity in decomposition of H2O2 using magnetite-immobilized catalase. The support of catalase is a glutaraldehyde-treated magnetite (Fe3O4). The data obtained in the H2O2 decomposition are analyzed. The fitting of the initial rate of the H2O2 decomposition versus hydrogen peroxide concentration data is discussed using a specific program for enzyme kinetics modeling (Leonora). The free catalase from Aspergillus niger (3.5 or 10 U/mL) does not show substrate inactivation up to 0.4 M H2O2. The immobilized catalase at low catalyst concentration shows substrate inhibition. Using 1 mg/mL of supported catalase the predicted maximum activity is higher than in the case of the free catalase at similar catalase concentration, although the optimum temperature is lower (40 °C versus 60 °C).  相似文献   

9.
The reaction of hydrogen peroxide H(2)O(2) with horse heart metmyoglobin (HH metMb), sperm whale metmyoglobin (SW metMb) and human metHb (metHbA) was studied at pH 6-8 by low temperature (10 K) EPR spectroscopy with the emphasis on the peroxyl radicals formed during the reaction. The same type of peroxyl radical was found in both myoglobin systems, as was concluded from close similarities in the spectroscopic properties of the radicals and in their kinetic dependences. This is consistent with previous reports of the peroxyl radical being localised on the Trp14 of SW and HH myoglobins. There are two types of peroxyl radical found in the metHbA/H(2)O(2) system, one (ROO-I) having spectral parameters, kinetic and pH dependences similar to those of the peroxyl radical found in both myoglobin systems. The other peroxyl radical (ROO-II) found in metHbA treated with H(2)O(2) has slightly different, though distinguishable, spectral parameters and a significantly different kinetic dependence as compared to those of the peroxyl radical common for all three proteins studied (ROO-I). The concentration of ROO-I radical formed in the three proteins on addition of H(2)O(2) correlates with the effectiveness of incorporating molecular oxygen into styrene oxide reported before for these three proteins. It is shown that a different distance from Trp14 to haem iron in the three proteins might be the structural basis for the different yield of the peroxyl radical and the different efficiency of incorporation of molecular oxygen into styrene. The site of the peroxyl radical found only in metHbA (ROO-II) is speculated to be the Trp37 residue of the beta-subunit of HbA.  相似文献   

10.
The role of H2O2 as a mediator of UVB-induced apoptosis in keratinocytes   总被引:5,自引:0,他引:5  
Apoptosis is an active form of cell death that is initiated by a variety of stimuli, including reactive oxygen species (ROS) and ultraviolet (UV) radiation. Previously, it has been reported that UVB-irradiation of keratinocytes leads to intracellular generation of hydrogen peroxide (H2O2) and that antioxidants can inhibit ROS-induced apoptosis. Although both UVB-irradiation and H2O2-incubation led to increased intracellular H2O2 levels, the antioxidants catalase and glutathione monoester (GME), inhibited apoptosis only when induced by H2O2, not by UVB. Furthermore, extracellular signal-regulated kinase (ERK), a prominent member of the mitogen-activated protein kinase (MAPK) family, was found to be activated by treatment with both UVB and H2O2. Inhibition of ERK phosphorylation by pre-treatment with PD98059 resulted in enhanced apoptosis after H2O2-exposure. However, no significant difference of apoptosis was observed between cells with and without inhibitor pre-treatment upon UVB-irradiation. DNA damage in the form of cyclobutane pyrimidine dimers was observed after exposure to UVB, but no photoproducts were found in H2O2-treated cells. These results suggest a ROS-independent pathway of UVB-induced apoptosis. Although UVB-irradiation causes moderate increase in H2O2, the generation of H2O2 does not contribute to the induction of apoptosis. Moreover, activation of ERK only blocks H2O2-dependent apoptosis but has no impact on UVB-induced apoptosis.  相似文献   

11.
Continuous chemostat cultures of a recombinant strain of Aspergillus niger (B1-D), engineered to produce the marker protein hen egg white lysozyme, were investigated with regard to their susceptibility to oxidative stress. The culture response to oxidative stress, produced either by addition of exogenous hydrogen peroxide (H2O2) or by high dissolved oxygen tension (DOT), was characterised in terms of the activities of two key defensive enzymes: catalase (CAT) and superoxide dismutase (SOD). Since the morphology is so critical in submerged fungal bioprocesses, the key morphological indices were analysed using a semi-automated image analysis system. Both oxidant stressors, H2O2 and elevated DOT, increased both enzyme activities, however, the extent was different: exogenous H2O2 led mainly to increased CAT activity, whereas gassing with O2 enriched air, which resulted in a DOT of 165% of air saturation, increased both enzyme activities more than 2-fold compared with the control steady state culture. Addition of exogenous H2O2 resulted in shorter hyphae compared with control steady state cultures. These findings indicate that it is unsound to use exogenous H2O2 to simulate oxidative stress induced by elevated dissolved oxygen levels since the response to each might be quite different, both in terms of enzymatic (defensive) responses and in terms of culture morphology.  相似文献   

12.
Escherichia coli lethality by hydrogen peroxide is characterized by two modes of killing. In this paper we have found that hydroxyl radicals (OH -) generated by H2O2 and intracellular divalent iron are not involved in the induction of mode one lethality (i.e. cell killing produced by concentrations of H2O2 lower than 2.5 mM). In fact, the OH radical scavengers, thiourea, ethanol and dimethyl sulfoxide, and the iron chelator, desferrioxarnine, did not affect the survival of cells exposed to 2.5mM H2O2. In addition cell vulnerability to the same H2O2 concentration was independent on the intracellular iron content. In contrast, mode two lethality (i.e. cell killing generated by concentrations of H2O2 higher than 10mM) was markedly reduced by OH radical scavengers and desferrioxamine and was augmented by increasing the intracellular iron content.

It is concluded that OH. are required for mode two killing of E. coli by hydrogen peroxide.  相似文献   

13.
The role of histidine on DNA breakage induced by hydrogen peroxide (H2O2) and ferric ions or by H2O2 and cupric ions was studied on purified DNA. L-histidine slightly reduced DNA breakage by H2O2 and Fe3+ but greatly inhibited DNA breakage by H2O2 and Cu2+. However, only when histidine was present, the addition of EDTA to H2O2 and Fe3+ exhibited a bimodal dose response curve depending on the chelator metal ratio. The enhancing effect of histidine on the rate of DNA degradation by H2O2 was maximal at a chelator metal ratio between 0.2 and 0.5, and was specific for iron. When D-histidine replaced L-histidine, the same pattern of EDTA dose response curve was observed. Superoxide dismutase greatly inhibited the rate of DNA degradation induced by H2O2, Fe3+, EDTA and L-histidine involving the superoxide radical.

These studies suggest that the enhancing effect of histidine on the rate of DNA degradation by H2O2 and Fe3+ is mediated by an oxidant which could be a ferrous-dioxygen-ferric chelate complex or a chelate-ferryl ion.  相似文献   

14.
Incubation of horse-heart oxymyoglobin or metmyoglobin with excess H2O2 causes formation of myoglobin(IV), followed by haem degradation. At the time when haem degradation is observed, hydroxyl radicals (.OH) can be detected in the reaction mixture by their ability to degrade the sugar deoxyribose. Detection of hydroxyl radicals can be decreased by transferrin or by OH scavengers (mannitol, arginine, phenylalanine) but not by urea. Neither transferrin nor any of these scavengers inhibit the haem degradation. It is concluded that intact oxymyoglobin or metmyoglobin molecules do not react with H2O2 to form OH detectable by deoxyribose, but that H2O2 eventually leads to release of iron ions from the proteins. These released iron ions can react to form OH outside the protein or close to its surface. Salicylate and the iron chelator desferrioxamine stabilize myoglobin and prevent haem degradation. The biological importance of OH generated using iron ions released from myoglobin by H2O2 is discussed in relation to myocardial reoxygenation injury.  相似文献   

15.
The ability of several beverages to generate hydrogen peroxide was demonstrated by direct measurement using the ferrous ion oxidation-xylenol orange (FOX) assay. Tea and coffee could generate H2O2 to achieve levels over 100 μM, but cocoa did not. Milk decreased net H2O2 production by beverages and showed some ability to remove H2O2 itself, apparently not because of catalase activity. Hence several of the beverages commonly drunk by humans show a complex mixture of anti- and pro-oxidant abilities.  相似文献   

16.
Sodium azide (NaN3) is known as an inhibitor of catalase, and a nitric oxide (NO) donor in the presence of catalase and H2O2. We showed here that catalase-catalyzed oxidation of NaN3 can generate reactive nitrogen species which contribute to tyrosine nitration in the presence of H2O2. The formation of free-tyrosine nitration and protein-bound tyrosine nitration by the NaN3/catalase/H2O2 system showed a maximum level at pH 6.0. Free-tyrosine nitration induced by peroxynitrite was inhibited by ethanol and dimethyl-sulfoxide (DMSO), and augmented by superoxide dismutase (SOD). However, free-tyrosine nitration induced by the NaN3/catalase/H2O2 system was not affected by ethanol, DMSO and SOD. NO-2 and NO donating agents did not affect free-tyrosine nitration by the NaN3/catalase/H2O2 system. The reaction of NaN3 with hydroxyl radical generating system showed free-tyrosine nitration, but no formation of nitrite and nitrate. The generation of nitrite (NO-2) and nitrate (NO-3) by the NaN3/catalase/H2O2 system was maximal at pH 5.0. These results suggested that the oxidation of NaN3 by the catalase/H2O2 system generates unknown peroxynitrite-like reactive nitrogen intermediates, which contribute to tyrosine nitration.  相似文献   

17.
Hydrogen peroxide (H2O2) can diffuse far from the site of production to intracellular locations where biological effects may be greater. The diffusion range is extended by H2O2 carriers formed spontaneously by hydrogen bonding with monomeric and polymeric compounds, including amino and dicarboxylic acids, peptides, proteins, nucleic acid bases, and nucleosides. Hydrogen peroxide adducts (HPAs) are readily synthesized, e.g., crystalline histidine (His)-H2O2 adducts. An equilibrium exists between an adduct-forming compound and H2O2. The detection and relative stabilities of HPAs are measured by the degree of decomposition of H2O2 as influenced by test compounds in buffered solution competing with glucose or fructose for H2O2. The HPAs delay decomposition of H2O2 up to several hundredfold. The overall charge on an HPA, i.e., its ability to penetrate cell membranes, influences the cytotoxic and clastogenic effects of H2O2. Growth inhibition of Salmonella typhimurium LT2 by H2O2 is enhanced by neutral HPAs but decreased by anionic HPAs. Addition of catalase 1, 10, or 30 min after inoculation of S. typhimurium LT2 reduces or nearly eliminates partial growth inhibition by H2O2, but a neutral HPA, expecially his-H2O2, transported H2O2 into the cells within 1 min, and in about 10 min completely inhibited growth. The stability of HPAs decreases with increasing pH or increasing temperature, while added Fe(II) in the presence and absence of EDTA accelerates H2O2 and HPA decomposition. Calculations indicate H2O2 hydrogen bonds with nucleic acid-base pairs with no apparent bond strain and energy stabilization comparable to normal hydrogen bonding.  相似文献   

18.
We have previously derived 2 V79 clones resistant to menadione (Md1 cells) and cadmium (Cd1 cells), respectively. They both were shown to be cross-resistant to hydrogen peroxide. There was a modification in the antioxidant repertoire in these cells as compared to the parental cells. Md1 presented an increase in catalase and glutathione peroxidase activities whereas Cd1 cells exhibited an increase in metallothionein and glutathione contents. The susceptibility of the DNA of these cells to the damaging effect of H2O2 was tested using the DNA precipitation assay. Both Md1 and Cd1 DNAs were more resistant to the peroxide action. In the case of Md1 cells it seems clear that the extra resistance is provided by the increase in the two H2O2 scavenger enzymes, catalase and glutathione peroxidase. In the case of Cd1 cells the activities of these enzymes as well as of superoxide dismutases (Cu/Zn and Mn) are unaltered as compared to the parental cells. The facts that parental cells exposed to 100 μM Zn2+ in the medium exhibit an increase in metallothionein but not in glutathione and that these cells become more resistant to the DNA-damaging effect of H2O2 suggest that this protein might play a protective role in vivo against the OH radical attack on DNA.  相似文献   

19.
Nitroxide free radicals interact with Hb/metHb, Mb/metMb and with peroxidases/phenols to induce a catalase-like conversion of H2O2 to O2 (catalatic activity), without being substantially consumed in the process. The mechanism of this reaction is postulated to involve a one-electron oxidation of the nitroxide to the immonium oxene, which then reacts further to release oxygen and the nitroxide. An involvement of the immonium oxene in the reaction mechanism is consistent with ferryl heme reduction by nitroxides and a detection of the reduced nitroxide when the reaction mixture is supplemented with the two-electron reductant sodium borohydride. The nitroxide-induced catalatic activity is completely inhibited when the reaction mixture is supplemented with glutathione. Nitroxides suppress free radical formation by hydroperoxide-activated heme proteins, as inferred from their inhibition of the spin-trapping of glutathionyl radicals. H2O2 decomposition and a suppression of reactive free radical formation by heme proteins appears to be an antioxidant activity of nitroxides, which is distinct from their previously reported superoxide dismutating activity and which may be a factor in their protective action in models of cardiac reperfusion injury.  相似文献   

20.
High field proton (1H) nuclear magnetic resonance (NMR) analysis of biofluids (healthy human blood sera and inflammatory knee-joint synovial fluids) has been employed to evaluate the hydrogen peroxide (H2O2)- and hydroxyl radical (°OH)- scavenging antioxidant capacities of a range of polar, low-molecular-mass endogenous metabolites therein. Data obtained indicate that consumption of H2O2 by pyruvate (generating acetate and CO2 via an oxidative decarboxylation reaction) and °OH radical by lactate (generating pyruvate, and subs quently acetate and CO2) may serve to protect alternative biofluid components (e.g., macromolecules) against reactive oxygen species-mediated oxidative damage in vivo. The mechanistic, physiological and potential therapeutic implications of these results are discussed with special reference to inflammatory joint diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号