首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
BACKGROUND AND AIMS: In fruit crops, fruit size at harvest is an important aspect of quality. With Japanese pears (Pyrus pyrifolia), later maturing cultivars usually have larger fruits than earlier maturing cultivars. It is considered that the supply of photosynthate during fruit development is a critical determinant of size. To assess the interaction of assimilate supply and early/late maturity of cultivars and its effect on final fruit size, the pattern of carbon assimilate partitioning from spur leaves (source) to fruit and other organs (sinks) during fruit growth was investigated using three genotypes differing in maturation date. METHODS: Partitioning of photosynthate from spur leaves during fruit growth was investigated by exposure of spurs to (13)CO(2) and measurement of the change in (13)C abundance in dry matter with time. Leaf number and leaf area per spur, fresh fruit weight, cell number and cell size of the mesocarp were measured and used to model the development of the spur leaf and fruit. KEY RESULTS: Compared with the earlier-maturing cultivars 'Shinsui' and 'Kousui', the larger-fruited, later-maturing cultivar 'Shinsetsu' had a greater total leaf area per spur, greater source strength (source weight x source specific activity), with more (13)C assimilated per spur and allocated to fruit, smaller loss of (13)C in respiration and export over the season, and longer duration of cell division and enlargement. Histology shows that cultivar differences in final fruit size were mainly attributable to the number of cells in the mesocarp. CONCLUSIONS: Assimilate availability during the period of cell division was crucial for early fruit growth and closely correlated with final fruit size. Early fruit growth of the earlier-maturing cultivars, but not the later-maturing ones, was severely restrained by assimilate supply rather than by sink limitation.  相似文献   

3.
Leaf lifespan in response to resource availability has been documented in many studies, but it still remains uncertain what determines the timing of leaf shedding. Here, we evaluate the lifetime carbon (C) balance of a leaf in a canopy as influenced by nitrogen (N) availability. Stands of Xanthium canadense were established with high-nitrogen (HN) and low-nitrogen (LN) treatments and temporal changes of C gain of individual leaves were investigated with a canopy photosynthesis model. Daily C gain of a leaf was maximal early in its development and subsequently declined. Daily C gain at shedding was nearly zero in HN, while it was still positive in LN. Sensitivity analyses showed that the decline in the daily C gain resulted primarily from the reduction in light level in HN and by the reduction in leaf N in LN. Smaller leaf size in LN than in HN led to higher light levels in the canopy, which helped leaves of the LN stand maintain for a longer period. These results suggest that the mechanism by which leaf lifespan is determined changes depending on the availability of the resource that is most limiting to plant growth.  相似文献   

4.
The allocation of carbon to shoots, roots, soil and rhizosphere respiration in barrel medic (Medicago truncatulaGaertn.) before and after defoliation was determined by growing plants in pots in a labelled atmosphere in a growth cabinet. Plants were grown in a 14CO2-labelled atmosphere for 30 days, defoliated and then grown in a 13CO2-labelled atmosphere for 19 days. Allocation of 14C-labelled C to shoots, roots, soil and rhizosphere respiration was determined before defoliation and the allocation of 14C and 13C was determined for the period after defoliation. Before defoliation, 38.4% of assimilated C was allocated below ground, whereas after defoliation it was 19.9%. Over the entire length of the experiment, the proportion of net assimilated carbon allocated below ground was 30.3%. Of this, 46% was found in the roots, 22% in the soil and 32% was recovered as rhizosphere respiration. There was no net translocation of assimilate from roots to new shoot tissue after defoliation, indicating that all new shoot growth arose from above-ground stores and newly assimilated carbon. The rate of rhizosphere respiration decreased immediately after defoliation, but after 8 days, was at comparable levels to those before defoliation. It was not until 14 days after defoliation that the amount of respiration from newly assimilated C (13C) exceeded that of C assimilated before defoliation (14C). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Stimulated plant production and often even larger stimulation of photosynthesis at elevated CO2 raise the possibility of increased C storage in plants and soils. We analysed ecosystem C partitioning and soil C fluxes in calcareous grassland exposed to elevated CO2 for 6 years. At elevated CO2, C pools increased in plants (+23%) and surface litter (+24%), but were not altered in microbes and soil organic matter. Soils were fractionated into particle size and density separates. The amount of low-density macroorganic C, an indicator of particulate soil C inputs from root litter, was not affected by elevated CO2. Incorporation of C fixed during the experiment (Cnew) was tracked by C isotopic analysis of soil fractions which were labelled due to 13C depletion of the commercial CO2 used for atmospheric enrichment. This data constrains estimates of C sequestration (absolute upper bound) and indicates where in soils potentially sequestered C is stored. Cnew entered soils at an initial rate of 210±42 g C m–2 year–1, but only 554±39 g Cnew m–2 were recovered after 6 years due to the low mean residence time of 1.8 years. Previous process-oriented measurements did not indicate increased plant–soil C fluxes at elevated CO2 in the same system (13C kinetics in soil microbes and fine roots after pulse labelling, and minirhizotron observations). Overall experimental evidence suggests that C storage under elevated CO2 occurred only in rapidly turned-over fractions such as plants and detritus, and that potential extra soil C inputs were rapidly re-mineralised. We argue that this inference does not conflict with the observed increases in photosynthetic fixation at elevated CO2, because these are not good predictors of plant growth and soil C fluxes for allometric reasons. C sequestration in this natural system may also be lower than suggested by plant biomass responses to elevated CO2 because C storage may be limited by stabilisation of Cnew in slowly turned-over soil fractions (a prerequisite for long-term storage) rather than by the magnitude of C inputs per se.  相似文献   

6.
The carbon and water budgets of boreal and temperate broadleaf forests are sensitive to interannual climatic variability and are likely to respond to climate change. This study analyses 9 years of eddy‐covariance data from the Boreal Ecosystem Research and Monitoring Sites (BERMS) Southern Old Aspen site in central Saskatchewan, Canada and characterizes the primary climatic controls on evapotranspiration, net ecosystem production (FNEP), gross ecosystem photosynthesis (P) and ecosystem respiration (R). The study period was dominated by two climatic extremes: extreme warm and cool springs, which produced marked contrasts in the canopy duration, and a severe, 3‐year drought. Annual FNEP varied among years from 55 to 367 g C m−2 (mean 172, SD 94). Interannual variability in FNEP was controlled primarily by factors that affected the R/P ratio, which varied between 0.74 and 0.96 (mean 0.87, SD 0.06). Canopy duration enhanced P and FNEP with no apparent effect on R. The fraction of annual photosynthetically active radiation (PAR) that was absorbed by the canopy foliage varied from 38% in late leaf‐emergence years to 51% in early leaf‐emergence years. Photosynthetic light‐use efficiency (mean 0.0275, SD 0.026 mol C mol−1 photons) was relatively constant during nondrought years but declined with drought intensity to a minimum of 0.0228 mol C mol−1 photons during the most severe drought year. The impact of drought on FNEP varied with drought intensity. Years of mild‐to‐moderate drought suppressed R while having little effect on P, so that FNEP was enhanced. Years of severe drought suppressed both R and P, causing either little change or a subtle reduction in FNEP. The analysis produced new insights into the dominance of canopy duration as the most important biophysical control on FNEP. The results suggested a simple conceptual model for annual FNEP in boreal deciduous forests. When water is not limiting, annual P is controlled by canopy duration via its influence on absorbed PAR at constant light‐use efficiency. Water stress suppresses P, by reducing light‐use efficiency, and R, by limiting growth and/or suppressing microbial respiration. The high photosynthetic light‐use efficiency showed this site to be a highly productive boreal deciduous forest, with properties similar to many temperate deciduous forests.  相似文献   

7.
BACKGROUND AND AIMS: Spring ephemerals have a specific life-history trait, i.e. shoot growth and sexual reproduction occur simultaneously during a short period from snowmelt to canopy closure in deciduous forests. The aim of this study is to clarify how spring ephemerals invest resources for seed production within a restricted period. METHODS: In order to evaluate the cost of reproduction of a typical spring ephemeral species, Adonis ramosa, an experiment was conducted comprising defoliation treatments (intact, one-third and two-thirds leaf-cutting) and fruit manipulations (control, shading and removal) over two growing seasons. In addition, measurements were made of the movements of carbon assimilated via (13)C tracing. KEY RESULTS: Survival rate was high irrespective of treatments and manipulations. The proportion of flowering plants and plant size decreased as a result of the defoliation treatments over 2 years, but the fruit manipulations did not affect flowering activity or plant size. Seed set and seed number decreased as a result of fruit shading treatment, but the defoliation treatments did not affect current seed production. Individual seed weight also decreased in the second year due to fruit shading. The (13)C tracing experiment revealed that young fruits had photosynthetic ability and current photosynthetic products from leaves were mainly transferred to the below-ground parts, while translocation to fruit was very small even when fruit photosynthesis was restricted by the shading treatment. CONCLUSIONS: Current foliage photosynthetic products are largely stored in the below-ground parts for survival and future growth, and about one-third of the resources for seed production may be attained by fruit photosynthesis. Therefore, the trade-off between current seed production and subsequent growth is weak. The cost of seed production may be buffered by sufficient storage in the below-ground organs, effective photosynthesis under high irradiation and self-assimilation ability of fruits.  相似文献   

8.
On a global basis, nearly 42% of tropical land area is classified as tropical deciduous forest (TDF) (Murphy and Lugo 1986). Currently, this ecosystem has very high deforestation rates; and its conversion to cattle pasture may result in losses of soil organic matter, decreases in soil fertility, and increases in CO2 flux to the atmosphere. The soil organic matter turnover rate in a TDF after pasture conversion was estimated in Mexico by determining natural abundances of13C. Changes in these values would be induced by vegetation changes from the C3 (forest) to the C4 (pasture) photosynthetic pathway. The rate of loss of remnant forest-soil organic matter (fSOM) was 2.9 t ha–1 year–1 in 7-year-old pasture and decreased to 0.66 t ha–1 year–1 by year 11. For up to 3 years, net fSOM level increased in pastures; this increment can be attributed to decomposition of remnant forest roots. The sand-associated SOM fraction was the most and the silt-associated fraction the least depleted. TDF conversion to pasture results in extremely high rates of loss of remnant fSOM that are higher than any reported for any tropical forest.  相似文献   

9.
Increasing our understanding of the factors regulating seasonal changes in rice canopy carbon gain (C(gain): daily net photosynthesis -- night respiration) under elevated CO(2) concentrations ([CO(2)]) will reduce our uncertainty in predicting future rice yields and assist in the development of adaptation strategies. In this study we measured CO(2) exchange from rice (Oryza sativa) canopies grown at c. 360 and 690 micromol mol(-1)[CO(2)] in growth chambers continuously over three growing seasons. Stimulation of C(gain) by elevated [CO(2)] was 22-79% during vegetative growth, but decreased to between -12 and 5% after the grain-filling stage, resulting in a 7-22% net enhancement for the whole season. The decreased stimulation of C(gain) resulted mainly from decreased canopy net photosynthesis and partially from increased respiration. A decrease in canopy photosynthetic capacity was noted where leaf nitrogen (N) decreased. The effect of elevated [CO(2)] on leaf area was generally small, but most dramatic under ample N conditions; this increased the stimulation of whole-season C(gain). These results suggest that a decrease in C(gain) enhancement following elevated CO(2) levels is difficult to avoid, but that careful management of nitrogen levels can alter the whole-season C(gain) enhancement.  相似文献   

10.
Photosynthetic (oxygen evolution) and growth (biomass increase) responses to ambient pH and inorganic carbon (Ci) supply were determined for Porphyralinearis grown in 0.5 L glass cylinders in the laboratory, or in 40 L fibreglass outdoor tanks with running seawater. While net photosynthetic rates were uniform at pH 6.0–8.0, dropping only at pH 8.7, growth rates were significantly affected by pH levels other than that of seawater (c. pH 8.3). In glass cylinders, weekly growth rates averaged 76% at external pH 8.0, 13% at pH 8.7 and 26% at pH 7.0. Photosynthetic O2 evolution on a daily basis(i.e. total O2 evolved during day time less total O2 consumed during night time) was similar to the growth responses at all experimental pH levels, apparently due to high dark respiration rates measured at acidic pH. Weekly growth rates averaged 53% in algae grown in fibreglass tanks aerated with regular air (360 mg L-1 CO2) and 28% in algae grown in tanks aerated with CO2-enriched air (750 mg L-1 CO2). The pH of the seawater medium in which P. linear is was grown increased slightly during the day and only rarely reached 9.0. The pH at the boundary layer of algae submerged in seawater increased in response to light reaching, about pH 8.9 within minutes, or remained unchanged for algae submerged in a CO2-free artificial sea water medium. Photosynthesis of P. linearissaturated at Ci concentrations of seawater (K0.5560 μM at pH 8.2) and showed low photosynthetic affinity for CO2(K0.5 61 μM) at pH 6.0. It is therefore concluded that P. linearisuses primarily CO2 with HCO3 - being an alternative source of Ci for photosynthesis. Its fast growth could be related to the enzyme carbonic anhydrase whose activity was detected intra- and extracellularly. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Smyrnium perfoliatum L. (Apiaceae), an endangered forest herb with only one main locality in South-West Slovakia (Devínska Kobyla in the Little Carpathian Mountains), is capable to recover chlorophylls at the end of the growing season. This regreening only within bracts was observed during two weeks before achieving the so-called “point of no return” that leads to the last stage of ontogenesis — leaf senescence. The effect not only of endogenous cytokinins on chlorophyll content and carbon dioxide exchange (photosynthesis, mitochondrial respiration, and photorespiration) is discussed but also of other factors such as strong irradiance, high temperature or drought stress on studied parameters was considered.  相似文献   

12.
Konjak (Amorphophallus konjac K. Koch) was grown under normal (350 bar) or enriched (700 bar) CO2 partial pressure in glasshouses kept at 33/26 °C. Doubling the CO2 partial pressure resulted in twice the yield of corm because the net CO2 assimilation rate doubled and, due to the simple source-sink relationship, the increased production was partitioned to the corm. The response to CO2 of assimilation by konjak is discussed in relation to its original habitat in the tropics.  相似文献   

13.
Small diameter (<1.0-mm) Acer saccharum Marsh roots were separated into white, brown and woody development state classes and analyzed for total N and C concentrations in April, July and October of 1988. White roots had greater concentrations of N and C than either brown or woody roots at each sampling date, and the N concentration of brown roots was consistently greater than that of woody roots. There were no temporal changes in N concentrations in any of the roots. C was slightly elevated in mid-summer in all three classes of roots. The data suggest the possible existence of an N translocation mechanism in ageing and developing fine roots. More research should be undertaken to establish the mechanisms of N loss in developing fine roots.  相似文献   

14.
When growing seaweeds in tanks, pH and carbon source supply have to be controlled in order to maximize photosynthesis. pH can be controlled either by adding various inorganic acids which requires the extra addition of carbon, or by combining pH control and carbon source with for instance CO2 or an organic acid such as acetic acid (CH3COOH). We have found comparable productivity of Chondrus using CO2 or CH3COOH in tank culture with an increase in production of 25.0 and 27.5%, respectively, over the control. Laboratory experiments showed that acetic acid enabled us to maintain a steady state total inorganic carbon in the medium, the algae displaying an active photosynthesis. Experiments using labelled acetic acid CH3-14COOH showed that the acid molecule or at least the -14COOH group is taken up by Chondrus although the mechanism was not elucidated. Preliminary extractions with hot ethanol showed that 67.9% of the label was solubilized from labelled tissue. Few counts were found in the carrageenans (< 1 %) and between 25.6 and 45.1% were found in the cellulosic residues. Acetic acid is suggested as an interesting means of regulating the pH and adding carbon in macrophyte culture.  相似文献   

15.
An inclusion complex between imazalil (IMZ), a selected fungicide, and cyclomaltoheptaose (beta-cyclodextrin, betaCD) was obtained using supercritical fluid carbon dioxide. The best preparation conditions were determined, and the inclusion complex was investigated by means of 1H NMR spectroscopy in aqueous solution and 13C CPMAS NMR spectroscopy in the solid state. Information on the geometry of the betaCD/IMZ complex was obtained from ROESY spectroscopy, while the dynamics of the inclusion complex in the kilohertz range was obtained from the proton spin-lattice relaxation times in the rotating frame, T(1rho) (1H).  相似文献   

16.
A 10-year-old speechless, mentally deficient male, with low arylsulfatase A (ARSA) activity, and presumably, methachromatic leukodystrophy, underwent genetic evaluation. As the clinical picture was not compatible with this diagnosisan ARSA gene and chromosome analysis were performed, showing the presence of a pseudodeficiency ARSA allele and a de novo apparently balanced t(16;22)(p11.2;q13) translocation. A deletion on the long arm of chromosome 22 encompassing the ARSA gene, as shown by FISH and array-CGH, indicated a 22q13 deletion syndrome. This case illustrates the importance of detailed cytogenetic investigation in patients presenting low arylsulfatase A activity and atypical/unspecific clinical features.  相似文献   

17.
Smyrnium perfoliatum L. (Apiaceae), an endangered summer forest herb grown in the understory of dominant oak-hornbeam stands in Devinska Kobyla, Little Carpathians region in SW Slovakia, is considered to form at least five leaf types of different physiological and anatomical quality. These observation are based upon the estimated differences of photosynthetic carbon dioxide uptake, chlorophyll content, leaf anatomy, and several quantitative parameters of growth analysis. There is a further attempt to establish, to what extent the daily changing environment, especially the excess of light of fast-moving sun-flecks by the photosynthetic apparatus within any leaf type, according to its dominant shade adaptation could be effectively used.  相似文献   

18.
Rotational frame nuclear Overhauser effect spectroscopy (ROESY) and (13)C NMR measurements were carried out to study the molecular interaction between maltodextrin, a digestive byproduct of starch, and an anionic surfactant. Significant differences in chemical shifts were observed when sodium dodecyl sulfate (SDS) was introduced into the maltodextrin (DE 10) solutions. (13)C NMR measurement indicated that there were downfield shifts and broadening of peaks, especially in the region of 75-81 and 100-103 ppm, which were assigned to carbons 1 and 4 of the d-glucopyranose residues of maltodextrin, respectively. ROESY spectra indicated cross-peaks between the SDS and maltodextrin protons. These peaks can arise only in the case of the designated SDS protons and maltodextrin protons being less than 0.5 nm apart for a substantial period of time. The most intense cross-peaks are those between the central CH(2) protons of SDS near 1.2 ppm and the maltodextrin protons ranging from 3.5 to 3.9 ppm. The SDS-H3 CH(2) protons were resolved from the bulk of the SDS protons, with peaks and shoulders at 1.25 ppm, which indicated an especially strong interaction of the SDS hydrophobic tail with MD6 and some less intense interactions with MD2, 4, and 5.  相似文献   

19.
亚热带不同林分土壤表层有机碳组成及其稳定性   总被引:5,自引:0,他引:5  
在浙江临安玲珑山选取了常绿阔叶林、马尾松林、板栗林和雷竹林4种林分,采用传统的化学方法与固态13C核磁共振(NMR)技术研究其土壤有机碳在不同粒径土壤颗粒中的分布规律和结构特征,探讨林分类别和管理措施对土壤有机碳含量及其结构的影响,为亚热带地区森林固碳和土壤碳库管理提供科学依据。结果显示:(1)土壤表层(0—20 cm)有机碳含量按以下次序递减:雷竹林>常绿阔叶林>马尾松林>板栗林,且板栗林以粉黏粒结合态碳为主,其他林分土壤则以粗砂结合态碳为主;(2)13C NMR结果表明,阔叶林和马尾松林土壤有机碳中烷基碳所占比例最大,而雷竹林和板栗林则是烷氧碳比例最大,表明人工经营措施改变了土壤有机碳的成分组成;(3)随着土壤颗粒变细,有机碳中烷基碳比例增加,烷氧碳比例减少,A/O-A值和疏水碳/亲水碳值逐渐增大,表明颗粒越细,其结合的有机碳结构稳定性越高。  相似文献   

20.
Depreissia is a little known genus comprising two hymenopteran-mimicking species, one found in Central Africa and one in the north of Borneo. The male of Depreissia decipiens is redescribed, the female is described for the first time. The carapace is elongated, dorsally flattened and rhombus-shaped, the rear of the thorax laterally depressed and transformed, with a pair of deep pits; the pedicel is almost as long as the abdomen. The male palp is unusual, characterized by the transverse deeply split membranous tegulum separating a ventral part which bears a sclerotized tegular apophysis and a large dagger-like retrodirected median apophysis. The female epigyne consists of one pair of large adjacent spermathecae and very long copulatory ducts arising posteriorly and rising laterally alongside the spermathecae continuing in several vertical and horizontal coils over the anterior surface. Relationships within the Salticidae are discussed and an affinity with the Cocalodinae is suggested. Arguments are provided for a hypothesis that Depreissia decipiens is not ant-mimicking as was previously believed, but is a mimic of polistinine wasps. The species was found in the canopy in the Kinabalu area only, in primary and old secondary rainforest at 200–700 m.a.s.l. Overlap of canopy-dwelling spider species with those in the understorey are discussed and examples of species richness and endemism in the canopy are highlighted. Canopy fogging is a very efficient method of collecting for most arthropods. The canopy fauna adds an extra dimension to the known biodiversity of the tropical rainforest. In southeast Asia, canopy research has been neglected, inhibiting evaluation of comparative results of this canopy project with that from other regions. More use of fogging as a collecting method would greatly improve insight into the actual species richness and species distribution in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号