首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Penicillium sp. in solid-state fermentation (SSF). METHODS AND RESULTS: Certain fermentation parameters involving incubation temperature, moisture content, initial pH value, inoculum and load size of medium, and incubation time were investigated separately. The optimal temperature and moisture level for alpha-galactosidase biosynthesis was found to be 30 degrees C and 50%, respectively. The range of pH 5.5-6.5 was favourable. About 40-50 g of medium in 250-ml flask and inoculum over 1.0 x 10(6) spores were suitable for enzyme production. Seventy-five hours of incubation was enough for maximum alpha-galactosidase production. Substrate as wheat bran supplemented with soyabean meal and beet pulp markedly improved the enzyme yield in trays. CONCLUSIONS: Under optimum culture conditions, the alpha-galactosidase activity from Penicillium sp. MAFIC-6 indicated 185.2 U g(-1) in tray of SSF. SIGNIFICANT AND IMPACT OF THE STUDY: The process on alpha-galactosidase production in laboratory scale may have a potentiality of scaling-up.  相似文献   

2.
Production of tannase by solid-state fermentation   总被引:2,自引:0,他引:2  
An attempt has been made to optimize the production of enzyme tannase by solid state fermentation (SSF) using the organism Rhizopus oryzae. The best favourable conditions for enzyme production include initial pH 5 with 4 days of incubation period at 40°C and 72% humidity, and 10 g wheat bran soaked in 2.5% tannic acid.  相似文献   

3.
Thermoactinomyces thalophilus produced cellulase free extracellular endo-1,4-beta-xylanase (EC 3.2.1.8) at 50 degrees C and pH 8.5. Maximum xylanase production was achieved in fermentation medium using birchwood xylan as substrate after 96 h of growth at 50 degrees C. Other agricultural substrates such as wheat bran, wheat straw, sugarcane bagasse and cornstover produced less xylanase. The crude enzyme preparation from mutant T. thalophilus P2 grown under optimised fermentation conditions showed no cellulase contamination and maximum xylanase activity of 42 U/ml at 65%deg;C and pH 8.5-9.0. This enzyme with initial xylanase activity of 42 U/ml was found thermostable up to 65 degrees C and retaining 50% of its activity after its incubation for 125 min at 65 degrees C.  相似文献   

4.
本文就小麦全蚀病菌胞外-1,3-葡聚糖酶的产生和部分酶学特性进行了研究。结果表明,小麦全蚀病菌能够产生胞外-1,3-葡聚糖酶。在供试的三种培养基中,最佳产酶培养基为改进的MS培养基。当以改进的MS为基础培养基时,最佳碳源为麦麸皮;最佳氮源为牛肉浸膏;产酶的最适条件为培养基初始pH为6,培养温度为26℃,250ml三角瓶中装培养基量为50ml时接菌量为4块菌饼(直径5mm)。另外,对酶的部分性质的研究结果表明,酶最适作用温度和pH分别为60℃和7.0,在50℃以下以及pH 5.5~7.5范围内稳定。  相似文献   

5.
A fungal strain, Aspergillus terreus strain GA2, isolated from an agricultural field cultivating sweet sorghum, produced feruloyl esterase using maize bran. In order to obtain maximum yields of feruloyl esterase, the solid state fermentation (SSF) conditions for enzyme production were standardized. Effective feruloyl esterase production was observed with maize bran as substrate followed by wheat bran, coconut husk, and rice husk among the tested agro-waste crop residues. Optimum particle size of 0.71- 0.3 mm and moisture content of 80% favored enzyme production. Moreover, optimum feruloyl esterase production was observed at pH 6.0 and a temperature of 30 degrees C. Supplementation of potato starch (0.6%) as the carbon source and casein (1%) as the nitrogen source favored enzyme production. Furthermore, the culture produced the enzyme after 7 days of incubation when the C:N ratio was 5. Optimization of the SSF conditions revealed that maximum enzyme activity (1,162 U/gds) was observed after 7 days in a production medium of 80% moisture content and pH 6.0 containing 16 g maize bran [25% (w/v)] of particle size of 0.71-0.3 mm, 0.6% potato starch, 3.0% casein, and 64 ml of formulated basal salt solution. Overall, the enzyme production was enhanced by 3.2-fold as compared with un-optimized conditions.  相似文献   

6.
里氏木霉GXC木聚糖酶的研究   总被引:2,自引:0,他引:2  
研究了里氏木霉GXC产木聚糖酶的条件和酶学性质。结果表明,适宜产酶碳源为乳糖、甘露糖、棉子糖、木聚糖和麸皮,氮源为牛肉膏和酵母膏;产酶的最适初始pH为4.0,30℃培养60h。对以麸皮为碳源的培养液进行纯化的酶特性研究表明,木聚糖酶的最适反应温度为50℃,pH为5.5,该酶在pH5.0(7.0和40℃以下相对稳定。Fe3+和Mn2+对木聚糖酶有较大的促进作用,Cu~2+、Fe~2+和Ca~2+ 具有抑制作用。  相似文献   

7.
研究了里氏木霉GXC产木聚糖酶的条件和酶学性质。结果表明,适宜产酶碳源为乳糖、甘露糖、棉子糖、木聚糖和麸皮,氮源为牛肉膏和酵母膏;产酶的最适初始pH为4.0,30℃培养60h。对以麸皮为碳源的培养液进行纯化的酶特性研究表明,木聚糖酶的最适反应温度为50℃,pH为5.5,该酶在pH5.0(7.0和40℃以下相对稳定。Fe3+和Mn2+对木聚糖酶有较大的促进作用,Cu~2+、Fe~2+和Ca~2+ 具有抑制作用。  相似文献   

8.
The ability of 88 fungi, which had been obtained as high-potency strains for acid proteinase production, to produce a new type of acid carboxypeptidase (having on optimal pH of about 3 for hydrolysis of benzyloxycarbonyl-glutamyltyrosine) in surface koji culture was determined. Among the aspergilli, substantial amounts of this new acid carboxypeptidase were produced by Aspergillus saitoi, A. usamii, A. awamori, A. inuii, and A. niger. Maximum yields of acid carboxypeptidase per gram of substrate were obtained by submerged culture in a medium containing 0.9% defatted soybean and 0.6% wheat bran. However, the maximum enzyme concentration per milliliter was obtained with a medium containing 3% defatted soybean and 2% wheat bran. The terminal pH could be controlled by varying the concentrations of soybean oil meal and wheat bran. The maximum enzyme production was reached after 4 days or more at 30 C.  相似文献   

9.
An extracellular high molecular weight β-glucosidase was secreted by a local strain P1 of Beauveria bassiana. The enzyme was produced in the presence of various carbon sources, namely glucose, maltose, lactose, glycerol, starch, wheat bran and gruel. The highest level of β-glucosidase activity was produced with wheat bran at the concentration of 3%. Glucose caused a repressor effect on the β-glucosidase expression in a dose-dependent manner. The highest enzyme production level was obtained at initial pH of 6.0 and 7.0 in the culture medium. The zymography analysis revealed that B. bassiana secreted a β-glucosidase with high molecular weight between 400 and 600 kDa. The enzymatic preparation was characterized and showed temperature and pH optima of 55°C and 5.0, respectively. The enzyme was stable at 40 and 50°C but its stability declined at 60°C. Interestingly, this β-glucosidase had high stability at acid and basic pH saving its initial activity after 24 h incubation at pH from 3.0 to 11.0. It was stable also in presence of monovalent Na+ and K+ ions saving 60% of its initial activity at 2 M salts. Bivalent metal ions preserved totally or partially the enzymatic activity; in addition, Ba2+ was revealed as an activator. This is the first report that focuses on the production and the biochemical characterization of a β-glucosidase from the entomopathogenic fungus, B. bassiana.  相似文献   

10.
Glucoamylase production has been investigated by solid-state fermentation of agro-industrial wastes generated during the processing of paddy to rice flakes (categorized as coarse, medium and fine waste), along with wheat bran and rice powder by a local soil isolate Aspergillus sp. HA-2. Highest enzyme production was obtained with wheat bran (264 +/- 0.64 U/gds) followed by coarse waste (211.5 +/- 1.44 U/gds) and medium waste (192.1 +/- 1.15 U/gds) using 10(6) spores/ml as inoculum at 28 +/- 2 degrees C, pH 5. A combination of wheat bran and coarse waste (1:1) gave enzyme yield as compared to wheat bran alone. Media supplementation with carbon source (0.04 g/gds) as sucrose in wheat bran and glucose in coarse and medium waste increased enzyme production to 271.2 +/- 0.92, 220.2 +/- 0.75 and 208.2 +/- 1.99 U/gds respectively. Organic nitrogen supplementation (yeast extract and peptone, 0.02 g/gds) showed a higher enzyme production compared to inorganic source. Optimum enzyme activity was observed at 55 degrees C, pH 5. Enzyme activity was enhanced in the presence of calcium whereas presence of EDTA gave reverse effect.  相似文献   

11.
In order to improve the production of the milk-clotting enzyme under submerged fermentation, two statistical methods were applied to optimize the culture conditions of Bacillus amyloliquefaciens D4 using wheat bran as nutrient source. First, initial pH, agitation speed, and fermentation time were shown to have significant effects on D4 enzyme production using the Plackett–Burman experimental design. Subsequently, optimal conditions were obtained using the Box–Behnken method, which were as follows: initial pH 7.57, agitation speed 241 rpm, fermentation time 53.3 h. Under these conditions, the milk-clotting enzyme production was remarkably enhanced. The milk-clotting enzyme activity reached 1996.9 SU/mL, which was 2.92-fold higher than that of the initial culture conditions, showing that the Plackett–Burman design and Box–Behnken response surface method are effective to optimize culture conditions. The research can provide a reference for full utilization of wheat bran and the production of milk-clotting enzyme by B. amyloliquefaciens D4 under submerged fermentation.  相似文献   

12.
Production of alkaline protease employing the laboratory isolate, Bacillus sp. under solid state fermentation (SSF) was optimized. The effect of wheat bran and lentil husk was examined. Wheat bran showed highest enzyme production. The appropriate incubation time, inoculum size, moisture level and buffer solution level were determined. Maximum yields of 429.041 and 168.640 U g−1 were achieved by employing wheat bran and lentil husk as substrates in 0.1 M carbonate/bicarbonate buffer at pH 10 with 30 and 40% initial moisture level at 24 h. Inoculum size and buffer solution level were found to be 20 and 25% and 0.5:1 for wheat bran and lentil husk, respectively.  相似文献   

13.
Strains of Aspergillus terreus and A. niger, known to produce xylanase with undetectable amounts of cellulase, were studied for xylanase (EC 3.2.1.8) production on various lignocellulosic substrates using solid state fermentation. Of the lignocellulosic substrates used, wheat bran was the best for xylanase production. The effects of various parameters, such as moistening agent, level of initial moisture content, temperature of incubation, inoculum size and incubation time, on xylanase production were studied. The best medium for A. terreus was wheat bran moistened with 1:5 Mandels and Strenberg mineral solution containing 0.1% tryptone, at 35 degrees C, and at inoculum concentration 2x107-2x108 spores 5 g-1 substrate; for A. niger, the best medium was wheat bran moistened with 1:5 Mandels and Strenberg mineral solution containing 0.1% yeast extract, at 35 degrees C, and at an inoculum concentration of 2x107-2x108 spores 5 g-1 substrate. Under these conditions, A. terreus produced 68.9 IU ml-1 of xylanase, and A. niger, 74.5 IU ml-1, after 4 d of incubation. A crude culture filtrate of the two Aspergillus strains was used for the hydrolysis of various lignocellulosic materials. Xylanase preparations from the two strains selectively removed the hemicellulose fraction from all lignocellulosic materials tested.  相似文献   

14.
High level production of an extracellular cellulase-poor alkali stable xylanase has been conceded from newly isolated Bacillus pumilus SV-85S under solid state fermentation using wheat bran as a substrate. Optimization of the fermentation conditions enhanced the enzyme production to 73,000 ± 1,000 IU/g dry substrate, which was 13.8-fold higher than unoptimized conditions (5,300 IU/g). The enzyme titre was highest after 48 h of incubation at 30°C with 1:3 ratios of substrate to moistening agent using wheat bran as a carbon source. The enzyme could be produced in significant levels by using either tap water or distilled water alone as a moistening agent. An elevated production of xylanase by B. pumilus SV-85S in the presence of wheat bran, a cheap and easily available agro-residue, in shorter duration would apparently reduce the enzyme cost substantially. The enzyme was completely stable over a broad pH (5-11) range and retained 52% of its activity at a temperature of 70°C for 30 min. The desired characteristics of this enzyme together with economic production would be important for its application in paper and pulp industry.  相似文献   

15.
Production of alkaline alpha-amylase employing our laboratory isolate, Bacillus sp., under solid state fermentation, was optimized. The effect of wheat bran and lentil husk was examined. Lentil husk exhibited the highest enzyme production. The appropriate incubation time, inoculum size, moisture level, and buffer solution level were determined. Maximum yields of 216,000 and 172,800 U/g were achieved by employing lentil husk and wheat bran as substrates in 0.1 M carbonate/bicarbonate buffer at pH 10.0 with 30% initial moisture level at 24 h. Inoculum size and buffer solution level were found to be 20% and 1:0.5 for two solid substrates.  相似文献   

16.
Some parameters of the production of an alkaline protease by Rhizopus oryzae in the solid state fermentation of wheat bran were optimized. Using the optimum parameters of an inoculum age of 7 days, an incubation time of 9 days, an amount of CZAPEK ‐DOX (liquid medium) of 6 ml/g bran and an incubation temperature of 33°C, an activity of 50 U/g bran was achieved. The initial pH of the CZAPEK ‐DOX medium had little effect. Re‐incubation of mouldy bran with only fresh CZAPEK ‐DOX yielded 3 times total activity compared to single‐cycle fermentation. As for the effect of the amount CZAPEK ‐DOX medium, the water constituent contributed more to activity increase than did the salt component. The ARRHENIUS activation energies were 23 and 7.9 kcal/mole below and above the optimum of 33°C, respectively. In all the studies, along with protease production, variation of protein content and specific activity were also observed. Attempts were made to explain the effects and also gauge their implications for large‐scale production.  相似文献   

17.
Ferulic acid esterase production by Streptomyces sp   总被引:1,自引:0,他引:1  
Studies were carried out on ferulic acid esterase production using a culture of Streptomyces S10. In optimized condition, enzyme yield was 2.0 mU/ml in MBS medium, containing 1.5% de-starched wheat bran at 30 degrees C and initial pH 6.5 under agitated submerged culture.  相似文献   

18.
β-Exoglucanase production on the lignocellulosic material, wheat bran, by Aspergillus niger under solid state fermentation (SSF) on a laboratory scale was investigated. Different fermentation parameters, such as moisture content, initial pH, temperature, depth of the substrate, and inoculum size on exoglucanase production were optimized. Moisture content of 40 %, pH of 7.0, substrate depth of 1.0 cm, inoculum size of 2?×?106 spores/g of wheat bran, and temperature at 30 °C were optimal for maximum production of exoglucanase. Maximum yields of exoglucanase with 28.60 FPU/g of wheat bran were obtained within 3 days of incubation under optimal conditions.  相似文献   

19.
Fibrolytic enzyme production by Aspergillus japonicus C03 was optimized in a medium containing agro-industrial wastes, supplemented with peptone and yeast extract. A 23 full factorial composite and response surface methodology were used to design the experiments and analysis of results. Tropical forages were hydrolyzed by A. japonicus C03 enzymatic extract in different levels, and they were also tested as enzymatic substrate. Optimal production to xylanase was obtained with soybean bran added to crushed corncob (1:3), 0.01% peptone, and 0.2% yeast extract, initial pH 5.0, at 30 °C under static conditions for 5 days of incubation. Optimal endoglucanase production was obtained with wheat bran added to sugarcane bagasse (3:1), 0.01% peptone, and 0.2% yeast extract, initial pH 4.0, at 30 °C, for 6 days, under static conditions. Addition of nitrogen sources as ammonium salts either inhibited or did not influence xylanase production. This enzymatic extract had a good result on tropical forage hydrolyzes and showed better performance in the Brachiaria genera, due to their low cell wall lignin quantity. These results represent a step forward toward the use of low-cost agricultural residues for the production of valuable enzymes with potential application in animal feed, using fermentation conditions.  相似文献   

20.
Abstract

The current study evaluated the production and characterization of β-glucosidase by the thermophilic fungus Thermomucor indicae-seudaticae in solid-state fermentation of wheat bran. Isolated fungi have significant amounts of β-glucosidase, an enzyme that may be applied to different industrial processes, such as the production of fuels, food, and other chemical compounds. Maximal enzyme activity occurred in pH 3.5–4.5 and at 70?°C. The enzyme exhibited high thermostability, for 1?h, up to 60?°C, and good tolerance to glucose (10?mM) and ethanol (10%). The optimization of fermentative parameters on the production of β-glucosidase was carried out by evaluating the best supplementary nutrient source, pH of nutrient solution, initial substrate moisture and fermentation temperature. The optimization of the above fermentation parameters increased enzyme activity by 120.0%. The highest enzymatic activity (164.0?U/g) occurred with wheat bran containing 70% initial moisture, supplemented with 1.0% (NH4)2SO4 solution at pH 5.5–6.0 and fungus incubated at 40?°C. A more detailed study of β-glucosidase suggested that Sulfur is an important component of the main amino acid present in this enzyme. The enhancer of the enzyme activity occurred when the fungus was grown on wheat bran supplemented with a sulfur-containing solution. In fact, increasing the concentration of sulfur in the solution increased its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号