首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Two previously undetected domains were identified in a variety of RNA-binding proteins, particularly RNA-modifying enzymes, using methods for sequence profile analysis. A small domain consisting of 60–65 amino acid residues was detected in the ribosomal protein S4, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast protein containing a pseudouridine synthetase and a deaminase domain, bacterial tyrosyl-tRNA synthetases, and a number of uncharacterized, small proteins that may be involved in translation regulation. Another novel domain, designated PUA domain, after PseudoUridine synthase and Archaeosine transglycosylase, was detected in archaeal and eukaryotic pseudouridine synthases, archaeal archaeosine synthases, a family of predicted ATPases that may be involved in RNA modification, a family of predicted archaeal and bacterial rRNA methylases. Additionally, the PUA domain was detected in a family of eukaryotic proteins that also contain a domain homologous to the translation initiation factor eIF1/SUI1; these proteins may comprise a novel type of translation factors. Unexpectedly, the PUA domain was detected also in bacterial and yeast glutamate kinases; this is compatible with the demonstrated role of these enzymes in the regulation of the expression of other genes. We propose that the S4 domain and the PUA domain bind RNA molecules with complex folded structures, adding to the growing collection of nucleic acid-binding domains associated with DNA and RNA modification enzymes. The evolution of the translation machinery components containing the S4, PUA, and SUI1 domains must have included several events of lateral gene transfer and gene loss as well as lineage-specific domain fusions. Received: 15 May 1998 / Accepted: 20 July 1998  相似文献   

2.
When divergence between viral species is large, the analysis and comparison of nucleotide or protein sequences are dependent on mutation biases and multiple substitutions per site leading, among other things, to the underestimation of branch lengths in phylogenetic trees. To avoid the problem of multiply substituted sites, a method not directly based on the nucleic or protein sequences has been applied to retroviruses. It consisted of asking questions about genome structure or organization, and gene function, the series of answers creating coded sequences analyzed by phylogenic software. This method recovered the principal retroviral groups such as the lentiviruses and spumaviruses and highlighted questions and answers characteristic of each group of retroviruses. In general, there was reasonable concordance between the coded genome methodology and that based on conventional phylogeny of the integrase protein sequence, indicating that integrase was fixing mutations slowly enough to marginalize the problem of multiple substitutions at sites. To a first approximation, this suggests that the acquisition of novel genetic features generally parallels the fixation of amino acid substitutions. Received: 18 May 2001 / Accepted: 7 September 2001  相似文献   

3.
Large lipid transfer proteins (LLTP) are nonexchangeable apolipoproteins and intracellular lipid-exchange proteins involved in the assembly, secretion, and metabolism of lipoproteins. We have identified contiguous conserved sequence motifs in alignments of insect apolipophorin II/I precursor (apoLp-II/I), human apolipoprotein B (apoB), invertebrate and vertebrate vitellogenins (VTG), and the large subunit of mammalian microsomal triglyceride transfer protein (MTP). Conserved motifs present in the N-terminal part of nonexchangeable apolipoproteins encompass almost completely the large subunit of MTP, suggesting a derivation from a common ancestral functional unit, termed large lipid transfer (LLT) module. Divergence of LLTP from a common ancestor is supported by (1) the statistical significance of the combined match scores obtained after motif-based database searches, (2) the presence of several identical amino acid residues in all LLTP sequences currently available, (3) the conservation of hydrophobic clusters in an α-helical domain, (4) the phylogenetic analysis of the conserved sequences related to the von Willebrand factor D (VWD) module identified in nonexchangeable apolipoproteins, and (5) the presence of four and one ancestral exon boundaries in the LLT and VWD modules, respectively. Our data indicate that the genes coding for apoLp-II/I, apoB, VTG, and the MTP large subunit are members of the same multigene superfamily. LLTP have emerged from an ancestral molecule designed to ensure a pivotal event in the intracellular and extracellular transfer of lipids and liposoluble substances. Received: 8 June 1998 / Accepted: 15 February 1999  相似文献   

4.
Phylogenetic relationships of nematodes, nematomorphs, kinorhynchs, priapulids, and some other major groups of invertebrates were studied by 18S rRNA gene sequencing. Kinorhynchs and priapulids form the monophyletic Cephalorhyncha clade that is the closest to the coelomate animals. When phylogenetic trees were generated by different methods, the position of nematomorphs appeared to be unstable. Inclusion of Enoplus brevis, a representative of a slowly evolving nematode lineage, in the set of analyzed species refutes the tree patterns, previously derived from molecular data, where the nematodes appear as a basal bilateral lineage. The nematodes seem to be closer to the coelomate animals than was speculated earlier. According to the results obtained, nematodes, nematomorphs, tardigrades, arthropods, and cephalorhynchs are a paraphyletic association of closely related taxa. Received: 1 December 1997 / Accepted: 9 April 1998  相似文献   

5.
6.
Chemosensory transduction and adaptation are important aspects of signal transduction mechanisms in many cell types, ranging from prokaryotes to differentiated tissues such as neurons. The eukaryotic ciliated protozoan, Tetrahymena thermophila, is capable of responding to both chemoattractants (O'Neill et al., 1985; Leick, 1992; Kohidai, Karsa & Csaba, 1994, 1995) and chemorepellents (Francis & Hennessey, 1995; Kuruvilla, Kim & Hennessey, 1997). An example of a nontoxic, depolarizing chemorepellent in Tetrahymena is extracellular lysozyme (Francis & Hennessey, 1995; Hennessey, Kim & Satir, 1995). Lysozyme is an effective chemorepellent at micromolar concentrations, binds to a single class of externally facing membrane receptors and prolonged exposure (10 min) produces specific chemosensory adaptation (Kuruvilla et al., 1997). We now show that this lysozyme response is initiated by a depolarizing chemoreceptor potential in Tetrahymena and we have purified the membrane lysozyme receptor by affinity chromatography of solubilized Tetrahymena membrane proteins. The solubilized, purified protein is 42 kD and it exhibits saturable, high affinity lysozyme binding. Polyclonal antibodies raised against this 42 kD receptor block the in vivo lysozyme chemoresponse. This is not only the first time that a chemoreceptor potential has been recorded from Tetrahymena but also the first time that a chemorepellent receptor has been purified from any unicellular eukaryote. Received: 28 July 1997/Revised: 14 November 1997  相似文献   

7.
The reliable reconstruction of tree topology from a set of homologous sequences is one of the main goals in the study of molecular evolution. If consistent estimators of distances from a multiple sequence alignment are known, the distance method is attractive because the tree reconstruction is consistent. To obtain a distance estimate d, the observed proportion of differences p (p-distance) is usually ``corrected' for multiple and back substitutions by means of a functional relationship d=f(p). In this paper the conditions under which this correction of p-distances will not alter the selection of the tree topology are specified. When these conditions are not fulfilled the selection of the tree topology may depend on the correction function applied. A novel method which includes estimates of distances not only between sequence pairs, but between triplets, quadruplets, etc., is proposed to strengthen the proper selection of correction function and tree topology. A ``super' tree that includes all tree topologies as special cases is introduced. Received: 17 February 1998 / Accepted: 20 July 1998  相似文献   

8.
9.
Prosaposin is a multifunctional protein encoded by a single-copy gene. It contains four saposin domains (A, B, C, and D) occurring as tandem repeats connected by linker sequences. Because the saposin domains are similar to one another, it is deduced that they were created by sequential duplications of an ancestral domain. There are two types of evolutionary scenarios that may explain the creation of the four-domain gene: (1) two rounds of tandem internal gene duplication and (2) three rounds of duplications. An evolutionary and phylogenetic analysis of saposin DNA and amino acid sequences from human, mouse, rat, chicken, and zebrafish indicates that the first evolutionary scenario is the most likely. Accordingly, an ancestral saposin-unit duplication produced a two-domain gene, which, subsequently, underwent a second complete tandem duplication to give rise to the present four-domain structure of the prosaposin gene. Received: 8 February 2001 / Accepted: 29 June 2001  相似文献   

10.
Copper chaperones are small cytoplasmic proteins that bind intracellular copper (Cu) and deliver it to Cu-dependent enzymes such as cytochrome oxidase, superoxide dismutase, and amine oxidase. Copper chaperones are similar in sequence and structure to the Cu-binding heavy metal-associated (HMA) domains of Cu-transporting ATPases (Cu-ATPases), and the genes for copper chaperones and Cu-ATPases are often located in the same operon. Phylogenetic analysis shows that Cu chaperones and HMA domains of Cu-ATPases represent ancient and distinct lineages that have evolved largely independently since their initial separation. Copper chaperone–Cu-ATPase operons appear to have evolved independently in different prokaryotic lineages, probably due to a strong selective pressure for coexpression of these genes. Received: 14 December 2000 / Accepted: 9 May 2001  相似文献   

11.
The identification of molecular water transporters and the generation of transgenic mice lacking water transporting proteins has created a need for accurate methods to measure water permeability. This review is focused on methodology to characterize water permeability in living cells and complex multicellular tissues. The utility of various parameters defining water transport is critically evaluated, including osmotic water permeability (P f ), diffusional water permeability (P d ), Arrhenius activation energies (E a ), and solute reflection coefficients (σ p ). Measurements in cellular and complex tissues can be particularly challenging because of uncertainties in barrier geometry and surface area, heterogeneity in membrane transporting properties, and unstirred layer effects. Strategies to measure plasma membrane P f in cell layers are described involving light scattering, total internal reflection fluorescence microscopy, confocal microscopy, interferometry, spatial filtering microscopy, and volume-sensitive fluorescent indicators. Dye dilution and fluorescent indicator methods are reviewed for measurement of P f across cell and tissue barriers. Novel fluorescence and gravimetric methods are described to quantify microvascular and epithelial water permeabilities in intact organs, using as an example lungs from aquaporin knockout mice. Finally, new measurement strategies and applications are proposed, including high-throughput screening for identification of aquaporin inhibitors. Received: 3 August 1999/Revised: 22 September 1999  相似文献   

12.
The mammalian immune system has cytotoxic mechanisms, both cellular and humoral, that destroy the membrane integrity of target cells. The main effector molecules of these cytolytic mechanisms—perforin, used by killer lymphocytes, and the membrane attack complex (MAC) components of the complement system—share a unique module called the MAC/perforin module. Until now, both immunological cytotoxicity and the MAC/perforin module have been reported only in jawed vertebrates. Here, we report the identification of a protein containing the MAC/perforin module from the invertebrate cephalochordate, amphioxus (Branchiostoma belcheri), using expressed sequence tag (EST) analysis of the notochord. The deduced amino acid sequence of this molecule is most similar to the primary structure of human complement component C6 and is designated AmphiC6. AmphiC6 shares a unique modular structure, including the MAC/perforin module, with human C6 and other MAC components. Another EST clone predicts the presence of a thioester-containing protein with the closest structural similarity to vertebrate C3 (therefore designated AmphiC3). AmphiC3 retains most of the functionally important residues of vertebrate C3 and is shown by phylogenetic analysis to be derived directly from the common ancestor of vertebrate C3, C4, and C5. Only opsonic activity has been assigned to the invertebrate complement system until now. Therefore, this is the first molecular evidence for complement-mediated immunological cytotoxicity in invertebrates. Received: 24 August 2001 / Accepted: 12 November 2001  相似文献   

13.
14.
Complete chloroplast 23S rRNA and psbA genes from five peridinin-containing dinoflagellates (Heterocapsa pygmaea, Heterocapsa niei, Heterocapsa rotun-data, Amphidinium carterae, and Protoceratium reticulatum) were amplified by PCR and sequenced; partial sequences were obtained from Thoracosphaera heimii and Scrippsiella trochoidea. Comparison with chloroplast 23S rRNA and psbA genes of other organisms shows that dinoflagellate chloroplast genes are the most divergent and rapidly evolving of all. Quartet puzzling, maximum likelihood, maximum parsimony, neighbor joining, and LogDet trees were constructed. Intersite rate variation and invariant sites were allowed for with quartet puzzling and neighbor joining. All psbA and 23S rRNA trees showed peridinin-containing dinoflagellate chloroplasts as monophyletic. In psbA trees they are related to those of chromists and red algae. In 23S rRNA trees, dinoflagellates are always the sisters of Sporozoa (apicomplexans); maximum likelihood analysis of Heterocapsa triquetra 16S rRNA also groups the dinoflagellate and sporozoan sequences, but the other methods were inconsistent. Thus, dinoflagellate chloroplasts may actually be related to sporozoan plastids, but the possibility of reproducible long-branch artifacts cannot be strongly ruled out. The results for all three genes fit the idea that dinoflagellate chloroplasts originated from red algae by a secondary endosymbiosis, possibly the same one as for chromists and Sporozoa. The marked disagreement between 16S rRNA trees using different phylogenetic algorithms indicates that this is a rather poor molecule for elucidating overall chloroplast phylogeny. We discuss possible reasons why both plastid and mitochondrial genomes of alveolates (Dinozoa, Sporozoa and Ciliophora) have ultra-rapid substitution rates and a proneness to unique genomic rearrangements. Received: 27 December 1999 / Accepted: 24 March 2000  相似文献   

15.
16.
The hammerhead and the hairpin ribozymes of plant viroids/virusoids and the hepatitis delta ribozyme were generally considered to be unrelated to one another. Here we report notable sequence interrelationships and some structural ones connecting all three. Received: 8 September 1999 / Accepted: 31 March 2000  相似文献   

17.
Annexin homologues in the kingdoms of Planta and Protista were characterized by molecular sequence analysis to determine their phylogenetic and structural relationship with annexins of Animalia. Sequence fragments from 19 plant annexins were identified in sequence databases and composite sequences were also assembled from expressed sequence tags for Arabidopsis thaliana. Length differences in protein amino-termini and evidence for unique exon splice sites indicated that plant annexins were distinct from those of animals. A third annexin gene of Giardia lamblia (Anx21-Gla) was identified as a distant relative to other protist annexins and to those of higher eukaryotes, thus providing a suitable outgroup for evolutionary reconstruction of the family tree. Rooted evolutionary trees portrayed protist, plant, and Dictyostelium annexins as early, monophyletic ramifications prior to the appearance of closely related animal annexin XIII. Molecular phylogenetic analyses of DNA and protein sequence alignments revealed at least seven separate plant subfamilies, represented by Anx18 (alfalfa, previously classified), Anx22 (thale cress), Anx23 (thale cress, cotton, rape and cabbage), Anx24 (bell pepper and tomato p34), Anx25 (strawberry, horseradish, pea, soybean, and castor bean), Anx26-Zma, and Anx27-Zma (maize). Other unique subfamilies may exist for rice, tomato p35, apple, and celery annexins. Consensus sequences compiled for each eukaryotic kingdom showed some breakdown of the ``annexin-fold' motif in repeats 2 and 3 of protist and plant annexins and a conserved codon deletion in repeat 3 of plants. The characterization of distinct annexin genes in plants and protists reflects their comparable diversity among animal species and offers alternative models for the comparative study of structure–function relationships within this important gene family. Received: 30 May 1996 / Accepted: 20 August 1996  相似文献   

18.
19.
It is commonly acknowledged that cartilaginous fishes, Chondrichthyes, have a basal position among the Gnathostomata (jawed vertebrates). In order to explore this relationship we have sequenced the complete mitochondrial genome of the spiny dogfish, Squalus acanthias, and included it in a phylogenetic analysis together with a number of bony fishes and amniotes. The phylogenetic reconstructions placed the dogfish among the bony fishes. Thus, and contrary to the common view, the analyses have shown that the position of the sharks is not basal among the gnathostomes. The presently recognized phylogenetic position of the dogfish was identified irrespective of the outgroup used, echinoderms or agnathan fishes. The lungfish was the most basal gnathostome fish, while the teleosteans had an apical position in the piscine tree. A basal position of the dogfish among the gnathostomes was statistically rejected, but the phylogenetic relationship among the coelacanth, spiny dogfish, and teleosts was not conclusively resolved. The findings challenge the current theory that sharks and other chondrichthyans, if monophyletic, are the sister group to all other extant gnathostomes. The results open to question the status of several morphological characters commonly used in piscine phylogenetic reconstruction, most notably the presence versus absence of endochondral bone in the endoskeleton, the macromeric versus micromeric structure of the exoskeleton, and the presence/absence of swimbladder and/or lung. The study also confirmed recent findings demonstrating that the origin of the amniotes is deeper than the diversification of extant bony fishes. Received: 12 March 1998 / Accepted: 12 June 1998  相似文献   

20.
To evaluate the influence of intracellular domains of connexin (Cx) on channel transfer properties, we analyzed mouse connexin (Cx) Cx26 and Cx30, which show the most similar amino acid sequence identities within the family of gap junction proteins. These connexin genes are tightly linked on mouse chromosome 14. Functional studies were performed on transfected HeLa cells stably expressing both mouse connexins. When we examined homotypic intercellular transfer of microinjected neurobiotin and Lucifer yellow, we found that gap junctions in Cx30-transfected cells, in contrast to Cx26 cells, were impermeable to Lucifer yellow. Furthermore, we observed heterotypic transfer of neurobiotin between Cx30-transfectants and HeLa cells expressing mouse Cx30.3, Cx40, Cx43 or Cx45, but not between Cx26 transfectants and HeLa cells of the latter group. The main differences in amino acid sequence between Cx26 and Cx30 are located in the presumptive cytoplasmic loop and C-terminal region of these integral membrane proteins. By exchanging one or both of these domains, using PCR-based mutagenesis, we constructed Cx26/30 chimeric cDNAs, which were also expressed in HeLa cells after transfection. Homotypic intercellular transfer of injected Lucifer yellow was observed exclusively with those chimeric constructs that coded for both cytoplasmic domains of Cx26 in the Cx30 backbone polypeptide chain. In contrast, cells transfected with a construct that coded for the Cx26 backbone with the Cx30 cytoplasmic loop and C-terminal region did not show transfer of Lucifer yellow. Thus, Lucifer yellow transfer can be conferred onto chimeric Cx30 channels by exchanging the cytoplasmic loop and the C-terminal region of these connexins. In turn, the cytoplasmic loop and C-terminal domain of Cx30 prevent Lucifer yellow transfer when swapped with the corresponding domains of Cx26. In chimeric Cx30/Cx26 channels where the cytoplasmic loop and C-terminal domains had been exchanged, the unitary channel conductance was intermediate between those of the parental channels. Moreover, the voltage sensitivity was slightly reduced. This suggests that these cytoplasmic domains interfere directly or indirectly with the diffusivity, the conductance and voltage gating of the channels. Received: 26 July 2000/Revised: 15 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号