首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study has been made of the effects of a variety of inhibitors on the plasma membrane ATPase and mitochondrial ATPase of Neurospora crassa. The most specific inhibitors proved to be vanadate and diethylstilbestrol for the plasma membrane ATPase and azide, oligomycin, venturicidin, and leucinostatin for mitochondrial ATPase. N,N′-Dicyclohexylcarbodiimide, octylguanidine, triphenylsulfonium chloride, and quercetin and related bioflavonoids inhibited both enzymes, although with different concentration dependences. Other compounds that were tested (phaseolin, fusicoccin, deoxycorticosterone, alachlor, salicyclic acid, N-1-napthylphthalamate, triiodobenzoic acid, cyclic AMP, cyclic GMP, theobromine, theophylline, and histamine) had no significant effect on either enzyme. Overall, the results indicate that the plasma membrane and mitochondrial ATPases are distinct enzymes, in spite of the fact that they may play related roles in H+ transport across their respective membranes.  相似文献   

2.
Characterization of the plasma membrane ATPase of Saccharomyces cerevisiae   总被引:6,自引:0,他引:6  
1. The distribution of ATPase and several marker enzymes was examined after differential and sucrose gradient centrifugation of yeast homogenates. 2. An ATPase activity not sensitive to oligomycin is found exclusively associated with a particulate fraction equilibrating at densities of 1.23-1.25. This particulate material shows the chemical and enzymatic characteristics of the yeast plasma membrane. 3. The pH optimum of the plasma membrane ATPase is 5.6, as compared with 8.5 for the mitochondrial ATPase. In addition to oligomycin, the enzyme is not sensitive to other inhibitors of the mitochondrial ATPase as azide, dicyclohexylcarbodiimide and the mitochondrial ATPase inhibitor protein. It is inhibited by p-chloromercuryphenyl sulfonate, fluoride, quercetin and by the antibiotic Dio-9 but is not affected by ouabain. 4. The plasma membrane ATPase shows a high affinity for ATP (Km = 0.1 mM) and is very specific for this compound, hydrolyzing other nucleotide triphosphates less than 25% as rapidly. No activity was detected with ADP. 5. The enzyme requires a divalent cation for activity and Mg2+ is the most effective. It is not significantly stimulated by K+ or bicarbonate and Ca2+ is inhibitory. 6. The activity cannot be assayed in intact cells unless they are permeabilized with toluene. This suggest that the active site is on the cytoplasmic side of the plasma membrane.  相似文献   

3.
Preliminary studies on yeast peroxisomes have suggested that the membrane of these organelles may contain a proton-pumping ATPase. It has been reported that peroxisome-associated activity is similar to the F0-F1 mitochondrial type ATPase in its sensitivity to azide at pH 9.0, but characteristics of the plasma membrane type ATPase are also evident in peroxisomal preparations in that they exhibit pH 6.5 activity that is sensitive to vanadate. A comparative study of the prominent organellar ATPase activities was undertaken as a probe into the existence of an enzyme that is unique to the peroxisome, and biochemical properties of yeast mitochondrial, plasma membrane, together with peroxisomally-associated H(+)-ATPases are presented. Enzyme marker analysis of sucrose gradient fractions revealed a high degree of correlation between the amount of azide-sensitive pH 9.0 ATPase activity and that of the mitochondrial membrane marker, cytochrome c oxidase, in peroxisomal preparations. Purified mitochondrial and peroxisomally-associated activities were highly sensitive to the presence of sodium azide, N,N' -dicyclohexylcarbodiimide (DCCD) and venturicidin when measured at pH 9.0. Comparisons of peroxisomal activities with those of the purified plasma membrane at pH 6.0 in the presence of azide showed similar sensitivity profiles with respect to inhibitors of yeast plasma membrane ATPases such as vanadate and p-chloromercuriphenyl-sulfonic acid (CMP). Purified peroxisomal membranes, furthermore, reacted with antibody to the mitochondrial F1 subunit (as revealed by Western blot analysis), and [35S] methionine-labeled, glucose-grown cells processed with unlabeled methanol-grown cells, yielded sucrose gradient fractions that were radioactive in bands that were also recognized by F1 antibody. Isolated fractions in these experiments had similar ratios of cpm:pH 9.0 ATPase activities, suggesting that this activity is mitochondrial in origin. The data presented for the characteristics of the peroxisomally-associated activity strongly suggest that the majority of the ATPase activity found in peroxisomal preparations is derived from other organelles.  相似文献   

4.
A study has been made to determine whether renal plasma membranes contain an HCO3 stimulated, ouabain insensitive Mg ATPase. Purified mitochondrial, microsomal and brush border membrane fractions have been isolated from rabbit kidney. The microsomal anion-sensitive ATPase activity appears to be entirely of mitochondrial origin on the basis of the effects of inhibitors of mitochondrial Mg ATPase. The brush border membrane fraction is contaminated with mitochondrial fragments and contains an Mg ATPase activity with low anion-sensitivity. Further purification of this fraction causes parallel decreases in anion-sensitivity of the Mg ATPase activity and in cytochrome c oxidase activity. These results indicate that conclusions previously reached by other investigators for a role of anion-sensitive Mg ATPase in the bicarbonate reabsorption of the proximal tubule may no longer be tenable.  相似文献   

5.
A study has been made to determine whether renal plasma membranes contain an HCO3? stimulated, ouabain insensitive Mg ATPase. Purified mitochondrial, microsomal and brush border membrane fractions have been isolated from rabbit kidney.The microsomal anion-sensitive ATPase activity appears to be entirely of mitochondrial origin on the basis of the effects of inhibitors of mitochondrial Mg ATPase.The brush border membrane fraction is contaminated with mitochondrial fragments and contains an Mg ATPase activity with low anion-sensitivity. Further purification of this fraction causes parallel decreases in anion-sensitivity of the Mg ATPase activity and in cytochrome c oxidase activity.These results indicate that conclusions previously reached by other investigators for a role of anion-sensitive Mg ATPase in the bicarbonate reabsorption of the proximal tubule may no longer be tenable.  相似文献   

6.
Effects of the antiarrhythmic drugs (propranolol, perhexiline maleate, lidoflazine and iproveratril) on energy-linked reactions and on membrane potential were studied. Propranolol, perhexiline maleate and lidoflazine inhibit the ATPase activity of undamaged and broken mitochondria, and of submitochondrial particles. All drugs are inhibitors of either ATP-driven or of succinate-driven reduction of NADP+. The antiarrhythmics promote a decrease in the membrane potential upon energization of the mitochondrial membrane by alpha-ketoglutarate, succinate, or ATP. It was suggested that these drugs have a primary action on the mitochondrial membrane, thus altering the activities of membrane proteins (channels and enzymes).  相似文献   

7.
The effects of vanadate, molybdate, and azide on ATP phosphohydrolase (ATPase) and acid phosphatase activities of plasma membrane, mitochondrial, and soluble supernatant fractions from corn (Zea mays L. WF9 × MO17) roots were investigated. Azide (0.1-10 millimolar) was a selective inhibitor of pH 9.0-ATPase activity of the mitochondrial fraction, while molybdate (0.01-1.0 millimolar) was a relatively selective inhibitor of acid phosphatase activity in the supernatant fraction. The pH 6.4-ATPase activity of the plasma membrane fraction was inhibited by vanadate (10-500 micromolar), but vanadate, at similar concentrations, also inhibited acid phosphatase activity. This result was confirmed for oat (Avena sativa L.) root and coleoptile tissues. While vanadate does not appear to be a selective inhibitor, it can be used in combination with molybdate and azide to distinguish the plasma membrane ATPase from mitochondrial ATPase or supernatant acid phosphatase.

Vanadate appeared to be a noncompetitive inhibitor of the plasma membrane ATPase, and its effectiveness was increased by K+. K+-stimulated ATPase activity was inhibited by 50% at about 21 micromolar vanadate. The rate of K+ transport in excised corn root segments was inhibited by 66% by 500 micromolar vanadate.

  相似文献   

8.
In conditions of glucose starvation, the maximum velocity of the mediated transport of nonmetabolized and metabolized amino acids, uridine, adenosine, and sucrose across the plasma membrane is stimulated by a factor of two by the addition of 1 mM adenosine 3':5'-monophosphate to Schizosaccharomyces pombe 972h- wild strain, to the glucose-super-repressed and derepressed mutants COB5 and COB6, and to Saccharomyces cerevisiae strain IL 216-IA. The mediated uptake of 2-D-deoxyglucose and the apparently nonmediated uptake of guanosine are not stimulated by the cyclic nucleotide. N6,O2'-Dibutyryl adenosine 3':5'-monophosphate is also efficient, whereas theophylline, guanosine 3':5'-monophosphate, 5'-AMP, ATP, and adenosine are ineffective. The cellular ATP content of glycerol-grown S. pombe COB5 is about 10 nmol per mg of protein and is not decreased by further incubation in the starvation medium. The addition of 100 mM glucose markedly enhances transport without any increase of the cellular ATP content. The addition of antimycin A or Dio-9 decreases markedly both cellular ATP content and transport. The addition of 2.5 mM glucose to antimycin A-containing medium restores both transport is not necessarily of mitochondrial origin. The uptake of 2-D-deoxyglucose is unaffected by the respiratory inhibitors. Stimulation of uptake by cyclic adenosine 3':5'-monophosphate occurs only in glucose-deprived cells. The addition of 10 mM glucose elicits the disappearance of the stimulation and prevents the 30% decrease of the cellular adenosine 3':5'-monophosphate content produced by glucose starvation. Adenosine 3':5'-'monophosphate does not enhance the steady state ATP level but requires cellular ATP produced either by endogenous respiration or, in the absence of respiration blocked by antimycin A, by further addition of 2.5 mM glucose. Stimulation of active uptake by adenosine 3':5'-monophosphate does not require protein synthesis because the addition of cycloheximide or anisomycin does not prevent the stimulation of L-leucine uptake. In the absence of respiration, Dio-9, and ATPase inhibitor, suppresses instantaneously the cellular ejection of protons as well as the uptake of uridine and amino acids. It abolishes also the adenosine 3':5'-monophosphate-stimulated transport. In the presence of antimycin A, specific mitochondrial ATPase inhibitors such as venruricidin A do not inhibit metabolite uptakes and their stimulation by adenosine 3':5'-monophosphate. These results suggest that in these conditions, the target of Dio-9 is not the mitochondrial ATPase but a plasma membrane proton-translocating function generating an electrochemical gradient required for active transport. That adenosine 3':5'-monophosphate enhances the Dio-9-sensitive proton extrusion supports the view that the cyclic nucleotide might modulate the plasma membrane ATPase.  相似文献   

9.
Membrane lipids of yeast mitochondria have been enriched by growing yeast cells in minimal medium supplemented with specific unsaturated fatty acids as the sole lipid supplement. Using the activity of marker enzymes for the outer (kynurenine hydroxylase) and inner (cytochrome c oxidase and oligomycin-sensitive ATPase) mitochondrial membranes, Arrhenius plots have been constructed using both promitochondria and mitochondria obtained from O2-adapting cells in the presence of a second unsaturated fatty acid (i.e. linoleate (N2) to elaidic (O2)). Transition temperatures which reflect the unsaturated fatty acid enrichment of the new membranes reveal interesting features involved in the mechanism of the assembly of these two mitochondrial membranes. This approach was further enforced with both lipid depletion and mitochondrial protein inhibition studies. Kynurenine hydroxylase which does not require fatty acid for its continued synthesis during aerobiosis seems to be incorporated into the preformed linoleate-anaerobic outer membrane. The newly synthesized activities of inner mitochondrial membrane enzymes on the other hand, appear to integrate their activity into newly formed aerobic-elaidic-rich inner membrane. These latter enzymes show a distinct dependence on fatty acid supplement for their continued synthesis during their aerobic phase. This suggests that O2-dependent proteo-lipid precursors are formed before these enzymes are integrated into their membrane mosaic. Two separate models are proposed to explain these results, one for the lipid-rich outer mitochondrial membrane and another for the protein-rich inner mitochondrial membrane.  相似文献   

10.
The Ca2+- or Mg2+-activated ATPase from rat liver plasma membrane was partly purified by treatments with sodium cholate and lysophosphatidylcholine, and by isopycnic centrifugation on sucrose gradients. The ATPase activity had high sensitivity to detergents, poor nucleotide specificity and broad tolerance for divalent cations. It was insensitive to mitochondrial ATPase inhibitors such as oligomycin and to transport ATPase inhibitors such as vanadate and ouabain. Using the cholate dialysis procedure, the partly purified enzyme was incorporated into asolectin vesicles. Upon addition of Mg2+-ATP, fluorescence quenching of 9-amino-6-chloro-2-methoxyacridine (ACMA) was observed. The quenching was abolished by a protonophore, carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Asolectin vesicles or purified ATPase alone failed to promote quenching. These data suggest that the Ca2+- or Mg2+-activated ATPase from rat liver plasma membrane is able of H+-translocation coupled to ATP hydrolysis.  相似文献   

11.
Plasma membranes from Candida tropicalis grown on glucose or hexadecane were isolated using a method based on the difference in surface charge of mitochondria and plasma membranes. After mechanical disruption of the cells, a fraction consisting of mitochondrial and plasma membrane vesicles was obtained by differential centrifugation. Subsequently the mitochondria were separated from the plasma membrane vesicles by aggregation of the mitochondria at a pH corresponding to their isoelectric point. Additional purification of the isolated plasma membrane vesicles was achieved by osmolysis. Surface charge densities of mitochondria and plasma membranes were determined and showed substrate-dependent differences. The isolated plasma membranes were morphologically characterized by electron microscopy and, as a marker enzyme, the activity of Mg2+-dependent ATPase was determine. By checking for three mitochondrial marker enzymes the plasma membrane fractions were estimated to be 94% pure with regard to mitochondrial contamination.  相似文献   

12.
  • 1.1. Weanling rats were fed diets differing in fatty acid composition to determine if changes induced in cardiac mitochondrial membrane structural components alter the sensitivity of mitochondrial ATPase to inhibition by oligomycin and stimulation by 2,4-dinitrophenol.
  • 2.2. Mitochondrial ATPase assayed in situ within the mitochondrial membrane isolated from animals fed diets higher in fatty acids of longer chain length, exhibited greater oligomycin sensitivity and lower 2,4-dinitrophenol-induced stimulation.
  • 3.3. Concomitant diet-induced changes occur in the fatty acid, composition of phosphatidylcholine, phosphatidylethanolamine and cardiolipin, increasing overall length of fatty-acyl tails in the membrane phospholipids.
  • 4.4. Diet fat mediated alterations in oligomycin sensitivity of mitochondrial ATPase and membrane fatty acid chain length suggest that vivo changes in thickness of the lipid bilayer may alter mitochindrial ATPase functions.
  • 5.5. The present study extends the concept that dietary fat affects mitochondrial membrane structure and function by demonstrating that the membrane-dependent sensitivity of mitochondrial ATPase to inhibitors and stimulators may be modulated by dietary fat.
  相似文献   

13.
Diets supplemented with high levels of saturated fatty acids derived from sheep kidney (perirenal) fat or unsaturated fatty acids derived from sunflower seed oil were fed to rats and the effect on heart mitochondrial lipid composition and membrane-associated enzyme behaviour was determined. The dietary lipid treatments did not change the overall level of membrane lipid unsaturation but did alter the proportion of various unsaturated fatty acids. This led to a change in the omega 6/omega 3 unsaturated fatty acid ratio, which was highest in the sunflower seed oil fed rats. Arrhenius plots of the mitochondrial membrane associated enzymes succinate-cytochrome c reductase and oligomycin-sensitive adenosinetriphosphatase (ATPase) after dietary lipid treatment revealed different responses in their critical temperature. For succinate-cytochrome c reductase, the critical temperature was 29 degrees C for rats fed the sheep kidney fat diet and 20 degrees C for rats fed the sunflower seed oil diet. In contrast, no shift in the critical temperature for the mitochondrial ATPase was apparent as a result of the differing dietary lipid treatments. The results suggest that the discontinuity in the Arrhenius plot of succinate-cytochrome c reductase is induced by some change in the physical properties of the membrane lipids. In contrast, mitochondrial ATPase appears insensitive, in terms of its thermal behaviour, to changes occurring in the composition of the membrane lipids. However, the specific activity of the mitochondrial ATPase was affected by the dietary lipid treatment being highest for the rats fed the sheep kidney fat diet. No dietary lipid effect was observed for the specific activity of succinate-cytochrome c reductase. This differential response of the two mitochondrial membrane enzymes to dietary-induced changes in membrane lipid composition may affect mitochondrial oxidative phosphorylation.  相似文献   

14.
Membrane adenosine triphosphatase activities in rat pancreas   总被引:3,自引:0,他引:3  
The membrane ATPase activities present in rat pancreas were studied to investigate the possible role of ATPase enzymes in HCO3(-) secretion in the pancreas. It was found that all the HCO3(-)-sensitive (anion-sensitive) ATPase activity was accountable as pancreatic mitochondrial ATPase, thus supporting the view that a distinct plasma membrane 'bicarbonate-ATPase' is not involved in HCO3(-) secretion in pancreas. A remarkably high Mg+- and CA2+-requiring ATPase activity (30 mumol ATP hydrolysed/min per mg) was found in the plasma membrane fraction (rho = 1.10-1.13). This activity has been characterized in some detail. It is inhibited by p-fluorosulfonylbenzoyladenosine, an affinity label analogue of ATP and the analogue appears to label covalently a protein of Mr approximately 35 000. The (Ca2+ + Mg2+)-ATPase activity did not form a 'phosphorylated-intermediate' and was vanadate-insensitive. These and other tests have served to demonstrate that the (Ca2+ + Mg2+)-ATPase activity is different in properties from (Na+ + K+)-ATPase, Ca2+-ATPase, (H+ + K+)-ATPase or mitochondrial H+-ATPase. Apart from the (Ca2+ + Mg2+)-ATPase of plasma membrane and mitochondrial ATPase, the only other membrane ATPase activities noted were (Na+ + K+)-ATPase, which occurred in the same fractions as the (Ca2+ + Mg2+)-AtPase at rho = 1.10-1.13 and was of surprisingly low activity, and an ATPase activity in light membrane fractions (rho - 1.08-1.09) derived from zymogen granule membranes. At this time, therefore, there is no obvious candidate for an ATPase activity at the luminal surface of pancreatic cells which is directly involved in ion transport, but the results presented here direct attention to the high activity (Ca2+ + Mg2+)-ATPase in the plasma membrane fraction.  相似文献   

15.
The gills of both seawater and freshwater adapted eels have an ATPase activity which is stimulated by anions in the presence of Mg2+. Plasma membranes were distinguished from mitochondrial membranes with specific enzyme markers, the membrane fractions separated on a discontinuous sucrose gradient, and the ATPase activity of the plasma membranes studied. Activation by the anions of Cl- or HCO3- followed Michaelis-Menten kinetics and was competitively inhibited by SCN-. The Cl- and HCO3- activation characteristics were determined: no differences between the plasma membrane ATPase activities of freshwater and seawater-adapted fishes were observed. Maximal activity measurements after solubilization of the enzymes by Triton X 100 confirmed these findings. The function of a membrane anion-dependent ATPase in the brachial epithelium of euryhaline fish is discussed.  相似文献   

16.
Membrane lipids of yeast mitochondria have been enriched by growing yeast cells in minimal medium supplemented with specific unsaturated fatty acids as the sole lipid supplement. Using the activity of marker enzymes for the outer (kynurenine hydroxylase) and inner (cytochrome c oxidase and oligomycin-sensitive ATPase) mitochondrial membranes, Arrhenius plots have been constructed using both pro-mitochondria and mitochondria obtained from O2-adapting cells in the presence of a second unsaturated fatty acid (i.e. linoleate (N2) to elaidic (O2)). Transition temperatures which reflect the unsaturated fatty acid enrichment of the new membranes reveal interesting features involved in the mechanism of the assembly of these two mitochondrial membranes. This approach was further enforced with both lipid depletion and mitochondrial protein inhibition studies. Kynurenine hydroxylase which does not require fatty acid for its continued synthesis during aerobiosis seems to be incorporated into the preformed linoleate-anaerobic outer membrane. The newly synthesized activities of inner mitochondrial membrane enzymes on the other hand, appear to integrate their activity into newly formed aerobic-elaidic-rich inner membrane. These latter enzymes show a distinct dependence on fatty acid supplement for their continued synthesis during their aerobic phase. This suggests that O2-dependent proteo-lipid precursors are formed before these enzymes are integrated into their membrane mosaic. Two separate models are proposed to explain these results, one for the lipid-rich outer mitochondrial membrane and another for the protein-rich inner mitochondrial membrane.  相似文献   

17.
1. Modification of a single amino acid residue by introduction of the nitrobenzofurazan group inactivates mitochondrial ATPase (adenosine triphosphatase) when membrane-bound in submitochondrial particles. The similarity between the reactions of both membrane-bound and isolated ATPase with 4-chloro-7-nitrobenzofurazan indicates that the single essential tryosine residue identified in the isolated enzyme [Ferguson, Loyd, Lyons & Radda (1975) Eur. J. Biochem. 54, 117-126] Is also a feature of the membrane-bound ATPase. 2. A procedure is presented for estimating the ATPase content of the inner mitochondrial membrane. It is based on the specificity of the incorporation of the nitrobenzofurazan group, and the ready removal of this group by compounds that contain a thiol group. This method indicates that 8.5% of the membrane protein is ATPase. The procedure should be applicable to the titration of the energy-transducing ATPases of bacterial plasma membranes and of the thylakoid membranes of chloroplasts. 3. Combination of the data obtained on the ATPase content of the bovine heart inner mitochondrial membrane with a titration of the cytochrome bc1 complex with antimycin indicates that these two components of the membrane are present in approximately equal amounts.  相似文献   

18.
19.
研究揭示细胞膜磷脂脂肪酸组成与质膜ATP酶在酵母菌耐酒精中的一种新颖关系。实验表明,细胞膜磷脂脂肪酸组成特点对生长于未添加酒精条件下的自絮凝颗粒酵母质膜ATP酶活性没有影响,但却明显影响生长于添加酒精(1%~10%,V/V)条件下的菌体质膜ATP酶对酒精激活的敏感性:预培养于添加0.6mmol/L棕榈酸、亚油酸、或亚麻酸条件下的菌体的质膜ATP酶的最大激活水平分别为各自酶的基态水平(未激活)的3.6、1.5和1.2倍,而对照组(预培养于未添加脂肪酸条件下的菌体)的相应值为2.3倍,酶产生上述最大激活水平时的酒精浓度分别为7%、6%、6%、和7%(V/V)。酶激活后米氏常数Km、最适pH和对钒酸钠(质膜ATP酶特异性抑制剂)的敏感性等性质不变,但最大反应速度υmax明显增加。实验表明,细胞膜磷脂脂肪酸组成特点对提高菌体的耐酒精能力越有利,则其质膜ATP酶被酒精激活的幅度越大,说明菌体耐酒精能力的提高与其质膜ATP酶对酒精激活的敏感性的增加密切相关。细胞膜磷脂脂肪酸组成会影响酵母菌质膜ATP酶对酒精激活的敏感性是观察到的新的实验现象。  相似文献   

20.
Abstract— The effects of lithium chloride in vitro and in vivo were investigated on Na-K ATPase and Mg ATPase activities in synaptic plasma membrane, mitochondrial and synaptic vesicle fractions prepared from rat brain. In vitro , lithium chloride (10−3-10−8 m ) had no effect on ATPase activity in any of the fractions studied. Lithium chloride given chronically by i.p. injection (30 mg/rat/day) for 9 days had little effect on synaptic plasma membrane ATPases. Dietary administration of lithium chloride (60 mmol/kg food) produced a small but significant increase in synaptic plasma membrane Mg ATPase activity after 3 weeks administration and mitochondrial Mg ATPase activity after 1 week. There was no effect on synaptic plasma membrane Na-K ATPase activity. Salt supplementation reduced the toxic effects of lithium administration and it is suggested that toxicity may account for some of the previously reported changes in synaptic membrane ATPases produced by lithium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号