首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transplantation of male germ cells into sterilized recipients has been widely used in mammals for conventional breeding and transgenesis purposes. This study presents a workable approach for germ cell transplantation between male chickens. Testicular cells from adult and prepubertal donors were dispersed and transplanted by injection directly into the testes of recipient males sterilized by repeated gamma irradiation. We describe the repopulation of the recipient seminiferous epithelium up to the production of heterologous sperm in about 50% of transplanted males. In comparison to males transplanted with testicular cell preparations from adult donors, in which the first ejaculates with sperm were recovered about 5 wk after transfer, a substantial interval (about 10 wk) was necessary to obtain ejaculates after the transfer of testicular cells from prepubertal donors. However, in both cases, recipient males produced ejaculates capable of fertilizing ova and producing progeny expressing donor genes.  相似文献   

2.
We recently succeeded in inducing germline transmission by transferring chicken testicular cells into heterologous testes. This study was designed subsequently to identify pluripotent cells in the testicular cells, which would induce the germline transmission. Testicular cells retrieved from juvenile (4-wk-old) or adult (24-wk-old) White Leghorn (WL) chickens were stained with germ cell-specific markers anti-SSEA1, anti-SSEA3, anti-SSEA4, anti-EMA1, anti-ITGA6, and anti-ITGB1 antibodies; 2C9; and lectin-Solanum tuberosum agglutinin (STA). The percentages of the cells that were positive for each marker were within the ranges of 0.33% -0.44% and 0.029%-0.072% of the total testicular cell population in the juvenile and adult, respectively, and significant (P < 0.0002) differences were detected between the ages. When 1 x 10(6) testicular cells were cultured in Dulbecco minimum essential medium-based medium supplemented with leukemia inhibitory factor (LIF), basic fibroblast growth factor (FGF2), and/or insulinlike growth factor 1 (IGF1), colony formation was detected only in LIF++FGF2-containing or LIF+FGF2+IGF1-containing medium during primary culture, and the supplementation of LIF+FGF2+IGF1 was the most efficient for maintaining the colony-forming cells through subculture. The established cells retrieved at the end of the primary culture or the 20th subpassage were positive for chicken germ cell-specific periodic acid-Schiff (PAS), EMA1, 2C9, SSEA1, SSEA3, SSEA4, ITGA6, and ITGB1; and lectin-STA markers (evaluated after 11th subpassage). Double staining of lectin-STA with anti-SSEA1, anti-SSEA3, anti-SSEA4, anti-ITGA6, and anti-ITGB1 also was possible. They differentiated spontaneously into embryoid bodies after being cultured in LIF-free medium. We conclude that germline stem cell-like cells are present in chicken testicular cells retrieved from both juvenile and adult testes, which can be identified with the specific markers for primordial germ cells or embryonic germ cells.  相似文献   

3.
To elucidate the mechanism of proliferation and differentiation of testicular germ cells, donor testicular germ cells labeled with enhanced green fluorescent protein (eGFP) were transplanted to recipient seminiferous tubules. The kinetics of colonization as well as of differentiation of the donor cells was followed in the same transplanted tubules (alive) under ultraviolet light. One week after transplantation, clusters of fluorescent cells were randomly spread as dots in the recipient seminiferous tubule, whereas non-homed cells flowed out from the testis to the epididymis. By 4 weeks after transplantation, green germ cells were observed with weak and moderate fluorescence along the recipient seminiferous tubule. By 8 weeks, proliferation and differentiation of the germ cells occurred, resulting in strong fluorescence in the middle part of the seminiferous tubule but in weak and moderate fluorescence at both terminals. The length of the fluorescent positive seminiferous tubule became longer. Detailed histological analyses of the recipient tubules indicated that the portions of the seminiferous tubule in weak, moderate, and strong fluorescence contained the spermatogonia, spermatogonia with spermatocytes, and all types of germ cells including spermatids, respectively. Thus, testicular stem cells colonized first as dots within 1 week, and then proliferated along the basement membrane of the seminiferous tubules followed by differentiation.  相似文献   

4.
The spermatogonial transplantation system was applied to evaluate stem cell kinetics and niche quality and to produce gene-modified animals using the stem cells after homologous recombination-based selection. This study was designed to determine whether the transplanted spermatogonia were able to proliferate and differentiate in male rats expressing the c-myc transgene under control of the human metallothionein IIA promoter (MT-myc Tg rats). Donor testicular cells were prepared from heterozygous chicken beta actin (CAG)/enhanced green fluorescent protein (EGFP)-transgenic rats (EGFP Tg rats) during the second week after birth and injected into the seminiferous tubules of the MT-myc Tg rats (line-A and -B; both subfertile) or rats pretreated with busulfan to remove endogenous spermatogonia. Three to four months after transplantation, cell colonies with EGFP fluorescence were detected in 36% (4/11), 40% (8/20), and 71% (5/7) of the transplanted testes in line-A MT-myc Tg rats, line-B MT-myc Tg rats, and busulfan-treated rats, respectively. No EGFP-positive colonies were detected when wild-type male rats were used as recipients (0/7; testis-basis). The histopathological and immunofluorescent examination of the serial sections from the transplanted testes showed normal spermatogenesis of the donor spermatogonia, but atrophy of the recipient seminiferous tubules. Microinsemination with round spermatids and mature spermatozoa derived from EGFP-positive testes in line-A rats resulted 26% (10/39 transferred) and 23% (11/48 transferred) full-term offspring, respectively. Thus, the MT-myc Tg male rats were suitable as potent recipients for spermatogonial transplantation without any chemical pretreatment to remove the endogenous spermatogonia.  相似文献   

5.
Radiation and chemotherapeutic drugs cause permanent sterility in male rats, not by killing most of the spermatogonial stem cells, but by blocking their differentiation in a testosterone-dependent manner. However, it is not known whether radiation induces this block by altering the germ or the somatic cells. To address this question, we transplanted populations of rat testicular cells containing stem spermatogonia and expressing the green fluorescent protein (GFP) transgene into various hosts. Transplantation of the stem spermatogonia from irradiated adult rats into the testes of irradiated nude mice, which do not show the differentiation block of their own spermatogonia, permitted differentiation of the rat spermatogonia into spermatozoa. Conversely transplantation of spermatogonial stem cells from untreated prepubertal rats into irradiated rat testes showed that the donor spermatogonia were able to colonize along the basement membrane of the seminiferous tubules but could not differentiate. Finally, suppression of testosterone in the recipient irradiated rats allowed the differentiation of the transplanted spermatogonia. These results conclusively show that the defect caused by radiation in the rat testes that results in the block of spermatogonial differentiation is due to injury to the somatic compartment. We also observed colonization of tubules by transplanted Sertoli cells from immature rats. The present results suggest that transplantation of spermatogonia, harvested from prepubertal testes to adult testes that have been exposed to cytotoxic therapy might be limited by the somatic damage and may require hormonal treatments or transplantation of somatic elements to restore the ability of the tissue to support spermatogenesis.  相似文献   

6.
High frequency production of zebrafish germline chimeras was achieved by transplanting ovarian germ cells into sterile Danio hybrid recipients. Ovarian germ cells were obtained from 3-mo-old adult Tg(vasa:DsRed2-vasa);Tg(bactin:EGFP) double transgenic zebrafish by discontinuous Percoll gradient centrifugation. An average of 755 ± 108 DsRed-positive germ cells was recovered from each female. For transplantations, a total of approximately 620 ± 242 EGFP-positive cells of which 12 ± 4.7 were DsRed-positive germ cells were introduced into the abdominal cavity under the swim bladder of 2-wk-old sterile hybrid larvae. Six weeks after transplantation, a total of 10 recipients, obtained from 2 different transplantations, were examined, and 2 individuals (20%) were identified that possessed a large number of DsRed- and EGFP-positive cells in the gonadal region. The transplanted ovarian germ cells successfully colonized the gonads and differentiated into sperm in the male hybrid recipients. Of 67 adult recipients, 12 (18%) male chimeric fish reproduced and generated normal offspring when paired with wild-type zebrafish females. The fertilization efficiency ranged from 23% to 56%. Although the fertile male chimeras were generated by transplantation of ovarian germ cells, the F1 generation produced by the male chimeras contained both male and female progeny, indicating that male sex determination in zebrafish is not controlled by sex chromosome heterogamy. Our findings indicate that a population of ovarian germ cells that are present in the ovary of adult zebrafish can function as germline stem cells, able to proliferate and differentiate into testicular germ cells and functional sperm in male recipients. The high frequency of germline chimera formation achieved with the ovarian germ cells and the convenience of identifying the chimeras in the sterile host background should make this transplantation system useful for performing genetic manipulations in zebrafish.  相似文献   

7.
Transplantation of spermatogonial stem cells from fertile, transgenic donor mice to the testes of infertile recipients provides a unique system to study the biology of spermatogonial stem cells. To facilitate the investigation of treatment effects on colonization efficiency an analysis system was needed to quantify colonization of recipient mouse seminiferous tubules by donor stem cell‐derived spermatogenesis. In this study, a computer‐assisted morphometry system was developed and validated to analyze large numbers of samples. Donor spermatogenesis in recipient testes is identified by blue staining of donor‐derived spermatogenic cells expressing the E. coli lacZ structural gene. Images of seminiferous tubules from recipient testes collected three months after spermatogonial transplantation are captured, and stained seminiferous tubules containing donor‐derived spermatogenesis are selected for measurement based on their color by color thresholding. Colonization is measured as number, area, and length of stained tubules. Interactive, operator‐controlled color selection and sample preparation accounted for less than 10% variability for all collected parameters. Using this system, the relationship between number of transplanted cells and colonization efficiency was investigated. Transplantation of 104 cells per testis only rarely resulted in colonization, whereas after transplantation of 105 and 106 cells per testis the extent of donor‐derived spermatogenesis was directly related to the number of transplanted donor cells. It appears that about 10% of transplanted spermatogonial stem cells result in colony formation in the recipient testis. The present study establishes a rapid, repeatable, semi‐interactive morphometry system to investigate treatment effects on colonization efficiency after spermatogonial transplantation in the mouse. Mol. Reprod. Dev. 53:142–148, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
Testis cell transplantation from mice or rats into recipient mouse seminiferous tubules results in donor cell-derived spermatogenesis in nearly all host testes. Normal spermatozoa are produced and, in the most successful mouse transplantations, the donor haplotype is transmitted to progeny of the recipient. However, few studies have been performed in other species. In this report, we demonstrate that rat and mouse testis cells will generate donor cell-derived spermatogenesis in recipient rat seminiferous tubules. Depletion of endogenous spermatogenesis before donor cell transplantation was more difficult in rat than reported for mouse recipients. A protocol employing treatment of neonatal rats with busulfan was most effective in preparing recipients and allowed more than 90% of testes to be colonized by donor cells. Transplantation of mouse testis cells into rat seminiferous tubules was most successful in recipients made cryptorchid and treated with busulfan. In the best experiments, about 55% of rat testes were colonized by mouse cells. Both rat and mouse donor cell-derived spermatogenesis were improved by treatment of rat recipients with leuprolide, a gonadotropin-releasing hormone agonist. The studies indicated that recipient preparation for spermatogonial stem cell transplantation was critical in the rat and differs from the mouse. However, modification of currently used techniques should allow male germ line stem cell transplantation in many species.  相似文献   

9.
Germ cell transplantation in pigs.   总被引:21,自引:0,他引:21  
Spermatogonial stem cells form the foundation of spermatogenesis, and their transplantation provides a unique opportunity to study spermatogenesis and may offer an alternative approach for animal transgenesis. This study was designed to extend the technique of spermatogonial transplantation to an economically important, large-animal model. Isolated immature pig testes were used to develop the intratesticular injection technique. Best results of intratubular germ cell transfer were obtained when a catheter was inserted into the rete testis under ultrasound guidance. The presence of infused dye or labeled cells was confirmed in the seminiferous tubules from 70 of 89 injected isolated testes. Infusion of 3-6 ml of dye solution or cell suspension could fill the rete and up to 50% of seminiferous tubules. The technique was subsequently applied in vivo. Donor cells included testis cells from 1- or 10-wk-old boars (from the recipients' contralateral testis or unrelated donors) and those from mice carrying a marker gene. Porcine testis cells were labeled with a fluorescent marker before transplantation. Testes were examined for the presence and localization of labeled donor cells immediately after transplantation or every week for 4 wk. Labeled porcine donor cells were found in numerous seminiferous tubules from 10 of 11 testes receiving pig cells. These results indicate that germ cell transplantation is feasible in immature pigs, and that porcine transplanted cells are retained in the recipient testis for at least 1 mo. This study represents a first step toward successful spermatogonial transplantation in a farm animal species.  相似文献   

10.
Spermatogonial transplantation provides access to the mammalian germline and has been used in experimental animal models to study stem cell/niche biology and germline development, to restore fertility, and to produce transgenic models. The potential to manipulate and/or transplant the germline has numerous practical applications that transcend species boundaries. To make the transplantation technology more broadly accessible, it is necessary to develop practical recipient preparation protocols. In the current study, mouse recipients for spermatogonial transplantation were prepared by treating pregnant females with the chemotherapeutic agent busulfan at different times during gestation. Donor germ cells were introduced into the testes of male progeny between 5 and 12 days postpartum. Analysis of recipient animals revealed that busulfan treatment of pregnant females on 12.5 days postcoitum was the most effective; male progeny transplanted with donor germ cells became fertile and passed the donor genotype to 25% of progeny. This approach was effective because 1) the cytoablative treatment reduced (but did not abolish) endogenous spermatogenesis, creating space for colonization by donor stem cells, 2) residual endogenous germ cells contributed to a healthy testicular environment that supported robust donor and recipient spermatogenesis, and 3) fetal busulfan-treated males could be transplanted as pups, which have been established as better recipients than adults. Laboratory mice provide a valuable experimental model for developing the technology that now can be applied and evaluated in other species.  相似文献   

11.
Sertoli cells dictate spermatogonial stem cell niches in the mouse testis   总被引:1,自引:0,他引:1  
Sustained spermatogenesis in adult males relies on the activity of spermatogonial stem cells (SSCs). In general, tissue-specific stem cell populations such as SSCs are influenced by contributions of support cells that form niche microenvironments. Previous studies have provided indirect evidence that several somatic cell populations and the interstitial vasculature influence SSC functions, but an individual orchestrator of niches has not been described. In this study, functional transplantation of SSCs, in combination with experimental alteration of Sertoli cell content by polythiouracil (PTU)-induced transient hypothyroidism, was used to explore the relationship of Sertoli cells with SSCs in testes of adult mice. Transplantation of SSCs from PTU-treated donor mice into seminiferous tubules of normal recipient mice revealed a greater than 3-fold increase in SSCs compared to those from testes of non-PTU-treated donors. In addition, use of PTU-treated mice as recipients for transplantation of SSCs from normal donors revealed a greater than 3-fold increase of accessible niches compared to those of testes of non-PTU treated recipient mice with normal numbers of Sertoli cells. Importantly, the area of seminiferous tubules bordered by interstitial tissue and percentage of seminiferous tubules associated with blood vessels was found to be no different in testes of PTU-treated mice compared to controls, indicating that neither the vasculature nor interstitial support cell populations influenced the alteration of niche number. Collectively, these results provide direct evidence that Sertoli cells are the key somatic cell population dictating the number of SSCs and niches in mammalian testes.  相似文献   

12.
Histopathology in testes from mice with actively induced experimental orchitis (EAO) (active EAO) and those from recipients of testis-sensitized lymphocytes (passive EAO) had different distributions. In passive EAO, maximum orchitis existed in the straight tubules, rete testis, and ductus efferentes, obstruction of which led to extreme dilatation of seminiferous tubules. Unusual intralymphatic granulomata also resulted in dilated testicular lymphatics. In active EAO, maximum orchitis affected seminiferous tubules under the testicular capsule, away from the rete testes. Vasitis was common and occurred in both active and passive EAO. In normal testes, IA+ F4/80+ cells were sparse but formed a cuff around the straight tubules. After immunization with testis in adjuvant or with adjuvant alone, the number, size, and staining intensity of IA+ cells increased dramatically beginning on day 5, 7 days before disease onset. Simultaneously, epithelial cells confined to the ductus efferentes became Ia+. Although recipients of sensitized lymphocytes also developed epithelial Ia in the ductus efferentes, they did not show changes in testicular interstitial Ia+ cells. Our findings indicate that testicular autoantigens are not completely sequestered, but are accessible to and can react with passively transferred immune lymphocytes in well-defined regions of the germ cell compartment. These regions coincided to a large extent with maximum expression of periductal or epithelial Ia. Changes in Ia+ cells in the testis, which are inducible by adjuvants and precede orchitis, may account in part for the different distribution of histopathology of active EAO.  相似文献   

13.
The objectives were to develop a transplantation assay for equine testicular cells using busulfan-treated prepubertal immunocompetent rats as recipients, and to determine if putative equine spermatogonial stem cells (SSCs) could be enriched by flow cytometric cell sorting (based on light scattering properties), thereby improving engraftment efficiency. Four weeks after transplantation of frozen/thawed PKH26-labeled equine testicular cells, 0.029 ± 0.045% (mean ± SD) of viable donor cells transplanted had engrafted. Donor cells were present in seminiferous tubules of all recipient rats forming chains, pairs, mesh structures, or clusters (with two to >30 cells/structure). Cells were localized to the basal compartment by the basement membrane. Although equine cells proliferated within rat seminiferous tubules, no donor-derived spermatogenesis was evident. Furthermore, there was no histologic evidence of acute cellular rejection. No fluorescent cells were present in control testes. When equine testicular cells were sorted based on light scattering properties, the percentage of transplanted donor cells that engrafted was higher after injection of cells from the small, low complexity fraction (II; 0.169 ± 0.099%) than from either the large, high complexity fraction (I; 0.046 ± 0.051%) or unsorted cells (0.009 ± 0.007%; P < 0.05). Seminiferous tubules of busulfan-treated prepubertal immunocompetent rats provided a suitable niche for engraftment and proliferation, but not differentiation, of equine testicular cells. Sorting equine testicular cells based on light scattering properties resulted in a 19-fold improvement in colonization efficiency by cells with high forward scatter and low side scatter, which may represent putative equine SSCs.  相似文献   

14.
The continuous production of mammalian sperm is maintained by the proliferation and differentiation of spermatogonial stem cells that originate from primordial germ cells (PGCs) in the early embryo. Although spermatogonial stem cells arise from PGCs, it is not clear whether fetal male germ cells function as spermatogonial stem cells able to produce functional sperm. In the present study, we examined the timing and mechanisms of the commitment of fetal germ cells to differentiate into spermatogonial stem cells by transplantation techniques. Transplantation of fetal germ cells into the seminiferous tubules of adult testis showed that donor germ cells, at 14.5 days postcoitum (dpc), were able to initiate spermatogenesis in the adult recipient seminiferous tubules, whereas no germ cell differentiation was observed in the transplantation of 12.5-dpc germ cells. These results indicate that the commitment of fetal germ cells to differentiate into spermatogonial stem cells initiates between embryonic days 12.5 and 14.5. Furthermore, the results suggest the importance of the interaction between germ cells and somatic cells in the determination of fetal germ cell differentiation into spermatogonial stem cells, as normal spermatogenesis was observed when a 12.5-dpc whole gonad was transplanted into adult recipient testis. In addition, sperm obtained from the 12.5- dpc male gonadal explant had the ability to develop normally if injected into the cytoplasm of oocytes, indicating that normal development of fetal germ cells in fetal gonadal explant occurred in the adult testicular environment.  相似文献   

15.
The niche is considered to play an important role in stem cell biology. Sertoli cells are the only somatic cells in the seminiferous tubule that closely interact with germ cells to create a favorable environment for spermatogenesis. However, little is known about how Sertoli cells develop to form the male germ line niche. We report here that Sertoli cells recovered and dissociated from testes of donor male mice can be microinjected into recipient testes, form mature seminiferous tubule structures, and support spermatogenesis. Sertoli cells from perinatal donors had a dramatically greater capacity for generating seminiferous tubules than those from adult donors. Furthermore, transplantation of wild-type Sertoli cells into infertile Steel/Steel(dickie) testes created a permissive testicular microenvironment for generating spermatogenesis and spermatozoa. Thus, our results demonstrate that the male germ line stem cell niche can be transferred between animals. In addition, the technique provides a novel tool with which to analyze spermatogenesis and might provide a mechanism for correcting fertility in males suffering from supporting cell defects.  相似文献   

16.
Recently a system was developed in which transplanted donor spermatogonial stem cells establish complete spermatogenesis in the testes of an infertile recipient. To obtain insight into stem cell activity and the behavior of donor germ cells, the pattern and kinetics of mouse spermatogonial colonization in recipient seminiferous tubules were analyzed during the 4 mo following transplantation. The colonization process can be divided into three continuous phases. First, during the initial week, transplanted cells were randomly distributed throughout the tubules, and a small number reached the basement membrane. Second, from 1 wk to 1 mo, donor cells on the basement membrane divided and formed a monolayer network. Third, beginning at about 1 mo and continuing throughout the observation period, cells in the center of the network differentiated extensively and established a colony of spermatogenesis, which expanded laterally by repeating phase two and then three. An average of 19 donor cell-derived colonies developed from 10(6) cells transplanted to the seminiferous tubules of a recipient testis; the number of colonized sites did not change between 1 and 4 mo. However, the length of the colonies increased from 0.73 to 5.78 mm between 1 and 4 mo. These experiments establish the feasibility of studying in a systematic and quantitative manner the pattern and kinetics of the colonization process. Using spermatogonial transplantation as a functional assay, it should be possible to assess the effects of various treatments on stem cells and on recipient seminiferous tubules to provide unique insight into the process of spermatogenesis.  相似文献   

17.
To study self-renewal and differentiation of spermatogonial stem cells, we have transplanted undifferentiated testicular germ cells of the GFP transgenic mice into seminiferous tubules of mutant mice with male sterility, such as those dysfunctioned at Steel (Sl) locus encoding the c-kit ligand or Dominant white spotting (W) locus encoding the receptor c-kit. In the seminiferous tubules of Sl/Sl(d) or Sl(17H)/Sl(17H) mice, transplanted donor germ cells proliferated and formed colonies of undifferentiated c-kit (-) spermatogonia, but were unable to differentiate further. However, these undifferentiated but proliferating spermatogonia, retransplanted into Sl (+) seminiferous tubules of W mutant, resumed differentiation, indicating that the transplanted donor germ cells contained spermatogonial stem cells and that stimulation of c-kit receptor by its ligand was necessary for maintenance of differentiated type A spermatogonia but not for proliferation of undifferentiated type A spermatogonia. Furthermore, we have demonstrated that their transplantation efficiency in the seminiferous tubules of Sl(17H)/Sl(17H) mice depended upon the stem cell niche on the basement membrane of the recipient seminiferous tubules and was increased by elimination of the endogenous spermatogonia of mutant mice from the niche by treating them with busulfan.  相似文献   

18.
When compared with C57BL/6By mice, BALB/cBy mice had testes that were 41% heavier at 60 days of age and seminiferous tubules that were 41% greater in cross-sectional area at 120 days. Absolute testicular weight did not increase between 60 and 120 days of age in either C57BL/6By or C57BL/10ScSn mice but did in BALB mice, paralleling changes in the size of the seminiferous tubules. Significant testicular growth took place over this age period in mice of all seven of the CXB recombinant-inbred (RI) strains of mice derived from a cross of the BALB/cBy and C57BL/6By strains. The wide range of phenotypes shown by adult recombinant mice, which ranged from those with significantly heavier testes than BALB to those with testes the same size (at 60 days) as those of C57BL/10ScSn mice, implied the existence of several separable factors affecting testicular size in adults. At 30 days of age the RI lines fell into two groups; one with small testes like C57BL/6By and the other with larger testes like BALB/cBy mice. The segregation pattern for prepubertal testicular weight was identical to that for the H-2 histocompatibility locus.  相似文献   

19.
The role of testosterone in the early stage of spermatocytogenesis was investigated in newborn rats. The testes of rats, either 0 or 6 days of age, were implanted into those of hypophysectomized adult rats that had or had not been injected with testosterone propionate (TP) after hypophysectomy and also into those in intact adult rats. All the animals were autopsied 17 or 11 days later when the implanted testes reached 17 days of age. The implanted testes were examined for cellular components in the seminiferous tubules. In an additional experiment, newborn rats were injected with TP or cyproterone acetate, an antagonistic substance against androgen, daily for the first 17 days of life and examined for testes. Proliferation of supporting cells and development of seminiferous tubules were less remarkable in the testes of newborn rats which had been implanted into the testes of hypophysectomized rats than in those which had been implanted into the testes of intact adult rats. Proliferation of supporting cells was not stimulated by TP, but development of seminiferous tubules was slightly promoted. Progress in spermatocytogenesis from gonocytes to pachytene primary spermatocytes was observed in the testes of newborn rats which had been implanted into the testes of hypophysectiomized rats. It was not so marked after injection with TP. These results suggested that testosterone might have stimulated development of seminiferous tubules and maturation of spermatocytes in the early stage of spermatocytogenesis by its synergistic action with a gonadotropin, possible follicle-stimulating hormone.  相似文献   

20.
The developmental fate of male and female cells in the ovary and testis was evaluated by injecting blastodermal cells from Stage X (Eyal-Gliadi and Kochav, 1976: Dev Biol 49:321–337) chicken embryos into recipients at the same stage of development to form same-sex and mixed-sex chimeras. The sex of the donor was determined by in situ hybridization of blastodermal cells to a probe derived from repetitive sequences in the W chromosome. The sex of the recipient was assigned after determination of the chromosomal composition of erythrocytes from chimeras at 10, 20, 40, and 100 days of age. If the sex chromosome complement of all of the erythrocytes was the same as that of blastodermal cells from the donor, the sex of the recipient was assumed to be the same as that of the donor. Conversely, if the sex-chromosome complement of a portion of the erythrocytes of the chimera differed from that of the donor blastodermal cells, the sex of the recipient was assumed to differ from that of the donor. Injection of male blastodermal cells into female recipients produced both male and female chimeras in equal proportions whereas injection of female cells into male recipients produced only male chimeras. One phenotypically male chimera developed with a left ovotestis and a right testis although sexual differentiation was usually resolved into an unambiguous sexual phenotype during development when ZZ and ZW cells were present in a chimera. Donor cells contributed to the germline of 25–33% of same-sex chimeras whereas 67% of male chimeras produced by injecting male donor cells into female recipients incorporated donor cells into the germline. When ZW cells were incorporated into chimeric males, W-chromosome-specific DNA sequences were occasionally present in DNA extracted from semen. To examine the potential of W-bearing spermatozoa to fertilize ova, males producing ZW-derived offspring and semen in which W-chromosome-specific DNA was detected by Southern analysis were mated to sex-linked albino hens. Since sex-linked albino female progeny were not obtained from this mating, it was concluded that the W-bearing sperm cells were unable to fertilize ova. The production of Z-derived, but not W-derived, offspring from ZW spermatogonia indicates that female primordial germ cells can become spermatogonia in the testes. In the testes, ZW spermatogonia enter meiosis I and produce functional ZZ spermatocytes. The ZZ spermatocytes complete the second meiotic division, continue to differentiate during spermiogenesis, and leave the seminiferous tubules as functional spermatozoa. By contrast, the WW spermatocytes do not appear to complete spermiogenesis and, therefore, spermatozoa bearing the W chromosome are not produced. When cells from male embryos were incorporated into a female chimera, ZZ “oogonia” were included within the ovarian follicles and the chromosome complement of genetically male oogonia was processed normally during meiosis. Following ovulation, the male-derived ova were fertilized and produced normal offspring. This is the first reported evidence that genetically male avian germ cells can differentiate into functional ova and that genetically female germ cells can differentiate into functional sperm. © 1995 wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号