首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleoside-phospholipid conjugates containing a nucleotidyl residue and two long alkyl chains have been synthesized and their self-organization and morphology have been investigated. In particular, 5'-phosphatidylcytidine spontaneously assembled to form linear and circular strands. Image processing analysis of the electron micrograph of the strands confirmed that they are indeed double helix reminiscent of the double-helical structure of nucleic acids. The linear and circular strands from 5'-phosphatidylcytidine had grooves of approximately 100 A in diameter and right-handed helical pitch of approximately 240 A.  相似文献   

2.
Phospholipid-ribonucleoside conjugates containing two myristoyl groups and a ribonucleotidyl group, dimyristoyl-5'-phosphatidyl-ribonucleosides, have been synthesized, and their self-organization and morphology have been investigated in acidic solutions. In acidic solutions, dimyristoyl-5'-phosphatidyl-ribonucleosides produced much different helical structures from those produced in neutral and alkaline solutions.  相似文献   

3.
We have developed a new class of helical strands that self-assembled spontaneously in aqueous solution. Phospholipid-deoxynucleoside conjugates containing two myristoyl groups and a deoxynucleosidyl group spontaneously assembled to form different types of helical strands.  相似文献   

4.
The deoxyhemoglobin S (deoxy-HbS) double strand is the fundamental building block of both the crystals of deoxy-HbS and the physiologically relevant fibers present within sickle cells. To use the atomic-resolution detail of the hemoglobin-hemoglobin interaction known from the crystallography of HbS as a basis for understanding the interactions in the fibers, it is necessary to define precisely the relationship between the straight double strands in the crystal and the twisted, helical double strands in the fibers. The intermolecular contact conferring the stability of the double strand in both crystal and fiber is between the beta6 valine on one HbS molecule and residues near the EF corner of an adjacent molecule. Models for the helical double strands were constructed by a geometric transformation from crystal to fiber that preserves this critical interaction, minimizes distortion, and makes the transformation as smooth as possible. From these models, the energy of association was calculated over the range of all possible helical twists of the double strands and all possible distances of the double strands from the fiber axis. The calculated association energies reflect the fact that the axial interactions decrease as the distance between the double strand and the fiber axis increases, because of the increased length of the helical path taken by the double strand. The lateral interactions between HbS molecules in a double strand change relatively little between the crystal and possible helical double strands. If the twist of the fiber or the distance between the double strand and the fiber axis is too great, the lateral interaction is broken by intermolecular contacts in the region around the beta6 valine. Consequently, the geometry of the beta6 valine interaction and the residues surrounding it severely restricts the possible helical twist, radius, and handedness of helical aggregates constructed from the double strands. The limitations defined by this analysis establish the structural basis for the right-handed twist observed in HbS fibers and demonstrates that for a subunit twist of 8 degrees, the fiber diameter cannot be more than approximately 300 A, consistent with electron microscope observations. The energy of interaction among HbS molecules in a double strand is very slowly varying with helical pitch, explaining the variable pitch observed in HbS fibers. The analysis results in a model for the HbS double strand, for use in the analysis of interactions between double strands and for refinement of models of the HbS fibers against x-ray diffraction data.  相似文献   

5.
Three-dimensional (3-D) helical reconstructions computed from electron micrographs of negatively stained dispersed F-actin filaments invariably revealed two uninterrupted columns of mass forming the "backbone" of the double-helical filament. The contact between neighboring subunits along the thus defined two long-pitch helical strands was spatially conserved and of high mass density, while the intersubunit contact between them was of lower mass density and varied among reconstructions. In contrast, phalloidinstabilized F-actin filaments displayed higher and spatially more conserved mass density between the two long-pitch helical strands, suggesting that this bicyclic hepta-peptide toxin strengthens the intersubunit contact between the two strands. Consistent with this distinct intersubunit bonding pattern, the two long-pitch helical strands of unstabilized filaments were sometimes observed separated from each other over a distance of two to six subunits, suggesting that the intrastrand intersubunit contact is also physically stronger than the interstrand contact. The resolution of the filament reconstructions, extending to 2.5 nm axially and radially, enabled us to reproducibly "cut out" the F-actin subunit which measured 5.5 nm axially by 6.0 nm tangentially by 3.2 nm radially. The subunit is distinctly polar with a massive "base" pointing towards the "barbed" end of the filament, and a slender "tip" defining its "pointed" end (i.e., relative to the "arrowhead" pattern revealed after stoichiometric decoration of the filaments with myosin subfragment 1). Concavities running approximately parallel to the filament axis both on the inner and outer face of the subunit define a distinct cleft separating the subunit into two domains of similar size: an inner domain confined to radii less than or equal to 2.5-nm forms the uninterrupted backbone of the two long-pitch helical strands, and an outer domain placed at radii of 2-5-nm protrudes radially and thus predominantly contributes to the outer part of the massive base. Quantitative evaluation of successive crossover spacings along individual F-actin filaments revealed the deviations from the mean repeat to be compensatory, i.e., short crossovers frequently followed long ones and vice versa. The variable crossover spacings and diameter of the F-actin filament together with the local unraveling of the two long-pitch helical strands are explained in terms of varying amounts of compensatory "lateral slipping" of the two strands past each other roughly perpendicular to the filament axis. This intrinsic disorder of the actin filament may enable the actin moiety to play a more active role in actin-myosin-based force generation than merely act as a rigid passive cable as has hitherto been assumed.  相似文献   

6.
Presently there is great interest in the construction of nanostructures from DNA fragments. Here we report the preparation of much larger helical textures with different shapes from pure DNA fragments. We have observed them while preparing crystals of the dodecamer d(AAAAAATTTTTT), which only contains adenine and thymine. Noncoding regions of the genome are always rich in these two bases. We have found a strong influence of ions either monovalent or divalent, with which different crystalline structures are found. All of them contain long helical stacks of duplexes in the unit cell. The most remarkable structures are macroscopic helices with diameters and pitch in the range of 20-40 microm. Thus, pure DNA oligonucleotides may form a hierarchy of helical structures, going from the B-form double helix (pitch, p = 33 A) to helical stacks of duplexes (p approximately 900 A), and to macroscopic helices (p approximately 300,000 A). These different levels of organization are reminiscent of the different levels of organization of DNA in eukaryotic chromosomes.  相似文献   

7.
Negative staining of virions and isolated nucleoids from avian myeloblastosis virus, murine leukemia virus, murine mammary tumor virus, and feline leukemia virus reveals common internal structures. The majority of virions that are penetrated by phosphotungstate show spherical nucleoids with no apparent symmetry. In a small percentage of virions, two distinctive structures are found: (i) single strands (3 to 5 nm in diameter) which are presumed to be the nucleoprotein and are found randomly oriented throughout the viral interior and (ii) helical structures (7 to 9 nm in diameter) which contain these nucleoprotein strands and are observed at the periphery of the nucleoid. The finding of helical nucleocapsid segments at the periphery of the nucleoid, as well as the hollow spherical structure observed in thin section of budding virions, has led to the hypothesis that the nucleocapsid of the freshly budded oncornavirus is supercoiled as a hollow sphere. This symmetry, however, is considered transient, as the internal structure of the extracellular virus undergoes a conformational rearrangement; thus, due to structural instability, the nucleocapsid uncoils and the nucleoprotein strands fill the interior of the virion. The extracellular virion is therefore considered degenerate in respect to symmetry, explaining the difficulty in detecting a helical nucleocapsid.  相似文献   

8.
The helix clock: a potential biomechanical cell cycle timer   总被引:5,自引:0,他引:5  
A model based upon helical geometry that provides cylindrically shaped cells with a means to measure their length during growth and to time cell cycle events is presented. The helix clock arises from the change in pitch angle that accompanies the parallel packing of strands on a cylinder surface. A single strand inserted into the cylinder surface nearly perpendicular to the long axis of the cylinder starts the clock running. As additional strands are inserted parallel to those in place, the pitch angle of all strands must reorient. A limit is reached when all strands lie parallel to the long axis of the cylinder. By sensing either the pitch angle or a physical ramification thereof, cells can measure their length during growth and time events of the cell cycle. The helix clock model is discussed in relationship to the bacterial cell cycle. The idea that bacterial cells use one helix hand for cylinder elongation, the other for septation is presented. The negative twist so generated apparently drives folding in the helical bacterial macrofiber system of Bacillus subtilis.  相似文献   

9.
The filament structures of the self-polymers of RecA proteins from Escherichia coli and Pseudomonas aeruginosa, their complexes with ATPgammaS, phage M13 single-stranded DNA (ssDNA) and the tertiary complexes RecA::ATPgammaS::ssDNA were compared by small angle neutron scattering. A model was developed that allowed for an analytical solution for small angle scattering on a long helical filament, making it possible to obtain the helical pitch and the mean diameter of the protein filament from the scattering curves. The results suggest that the structure of the filaments formed by these two RecA proteins, and particularly their complexes with ATPgammaS, is conservative.  相似文献   

10.
Addition of millimolar concentrations of Co2+ to Escherichia coli glutamine synthetase induces aggregation along the 6-fold symmetry axes of the protein molecules, forming long strands. The strands subsequently aggregate laterally to form two types of helical cables, a large cable with six outer strands wrapped around a central strand (6+1-stranded cables) and a smaller cable in which three strands wrap around one another. Similar but less extensive aggregation is induced by other divalent metal cations: Cu2+, Ni2+ and Zn2+. The aggregates exhibit little enzymatic activity, and aggregation is completely reversible upon removal of Co2+ in the presence of millimolar Mn2+, including regeneration of nearly full enzyme activity.Each type of helical cable exists in a variety of related forms, which vary in their helical pitch: 6+1-stranded cables have 6-fold axial symmetry, and different specimens are observed with helical pitches from 320 to 540 nm; 3-stranded cables apparently do not have 3-fold axial symmetry and have pitches from 140 to 270 nm. The large variation in pitch for glutamine synthetase helical cables implies either a variation of the regions of intermolecular contacts of approximately 4–10 Å, or a movement of the bonding domains relative to the rest of the molecule by a similar amount.  相似文献   

11.
Summary The cytoplasmic components of Myxococcus xanthus were found to be helical strands of considerable length when examined in thin sections of cells. Similar structures were obtained in a population of isolated particles from fractionated cells. The width of the strands was estimated to be approximately 250 A, a single thread was about 50 A in width. It was suggested that the helices were fibrillar. The width of single fibrils was close to the resolving power of the instrument, about 10 A. No single ribosomes were found in thin sections of cells but most of the isolated particles were round, 100–250 A in diameter. The cytoplasmic strands were built of subunits of the size known for ribosomes which could be identified as such upon fragmentation of the strands. Crystal-like structures were found in this Gram-negative organism which, in some cases, comprised a large portion of the cell. The question was raised whether this type of fabric represents the true physical organization of the cytoplasm.Dedicated to Prof. Dr. W. Schwartz on his 70th birthday.  相似文献   

12.
Herpes simplex virus type 1 single-stranded DNA-binding protein (ICP8) has been crystallized on a positively charged lipid monolayer. The crystals belong to the planar group p2 with a=39 nm, b=23.2 nm and gamma=87.2 degrees. The projected map of ICP8 crystals calculated at a resolution of 3.9 nm shows four ICP8 monomers per unit cell with the crystals formed by a parallel arrangement of 16.2 nm helical ICP8 filaments. This novel filamentous form has not been reported before. The ICP8 monomers show different appearances in projection, suggesting that they may adopt different orientations, probably reflecting the strong intermolecular and lipid-filament interactions in the crystal. When the 23 nm diameter filaments formed by ICP8 in solution at low temperature in the presence of magnesium were generated and then layered on the phospholipid monolayer, highly ordered arrays of an 8.5 nm filament with a shallow 31.2 nm pitch were observed and reconstruction revealed a double-helical structure.  相似文献   

13.
A DNA trefoil (31) knot has been constructed from a 104-nucleotide molecule whose strands form a 3-arm branched junction motif. This construction tests the notion that a node in a DNA knot can be equated with a half-turn of double-helical DNA, and is consistent with that concept. Of five 104-mer sequences tested, only one produces high yields of the target knot. The other molecules produce larger quantities of circular material and of a knot containing more nodes. The key features that differentiate the successful design from the others are (1) the ligation takes place in the linker region between helical domains and (2) only six nucleotide pairs are used for each of the double-helical arms of the junction. The successful design separates the double-helical regions from each other by a spacer containing two deoxythymidine nucleotides at the site of the branched junction. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
Neurofilaments purified from invertebrate giant axons have been analyzed with the electron microscope. The neurofilaments have a helical substructure which is most easily observed when the neurofilaments are partially denatured with 0.5 M KCl or 2 M urea. When the ropelike structure comprising the neurofilaments untwists, two strands 4--5.5nm in diameter can be resolved. Upon further denaturation these strands break up into rod-shaped segments and subsequently these segments roll up into amorphous globular structures. Stained, filled densities can be resolved within the strand segments, and these resemble similar structures observed within the intact neurofilaments. The strands appear to consist of protofilaments 2--2.5 nm in diameter. These observations suggest that the neurofilament is a ropelike, helical structure composed of two strands twisted tightly around each other, and they su-port the filamentous rather than the golbular model of intermediate filament structure.  相似文献   

15.
The stereochemistry of a four-way DNA junction: a theoretical study.   总被引:18,自引:7,他引:11       下载免费PDF全文
The stereochemical conformation of the four-way helical junction in DNA (the Holliday junction; the postulated central intermediate of genetic recombination) has been analysed, using molecular mechanical computer modelling. A version of the AMBER program package was employed, that had been modified to include the influence of counterions and a global optimisation procedure. Starting from an extended planar structure, the conformation was varied in order to minimise the energy, and we discuss three structures obtained by this procedure. One structure is closely related to a square-planar cross, in which there is no stacking interaction between the four double helical stems. This structure is probably closely similar to that observed experimentally in the absence of cations. The remaining two structures are based on related, yet distinct, conformations, in which there is pairwise coaxial stacking of neighbouring stems. In these structures, the four DNA stems adopt the form of two quasi-continuous helices, in which base stacking is very similar to that found in standard B-DNA geometry. The two stacked helices so formed are not aligned parallel to each other, but subtend an angle of approximately 60 degrees. The strands that exchange between one stacked helix and the other are disposed about the smaller angle of the cross (i.e. 60 degrees rather than 120 degrees), generating an approximately antiparallel alignment of DNA sequences. This structure is precisely the stacked X-structure proposed on the basis of experimental data. The calculations indicate distortions from standard B-DNA conformation that are required to adopt the stacked X-structure; a widening of the minor groove at the junction, and reorientation of the central phosphate groups of the exchanging strands. An important feature of the stacked X-structure is that it presents two structurally distinct sides. These may be recognised differently by enzymes, providing a rationalisation for the points of cleavage by Holliday resolvases.  相似文献   

16.
Electron microscopy of bacterized and axenic trophozoites of Entamoeba histolytica showed only slight differences in ultrastructure between the two. As with other species of Entamoeba so far studied, this species lacks typical mitochondrial structures and formed endoplasmic reticulum. Dense clusters of glycogen particles are especially characteristic in axenic amebas. Microtubular structures 360 A in diameter appear randomly oriented in both bacterized and axenic trophozoites. Ribonucleoprotein (RNP) bodies are of two typical forms—elongate, parallel arrays of helices (the classical chromatoid bodies), and short helical fragments. Both kinds of helix show a recurring pitch angle of 68–80° and an over-all diameter of 480 A. RNP particles comprising the helices average 180 A in diameter. The longitudinal axes of adjacent helices are 440 A apart. Following RNase digestion of water-soluble methacrylate sections, helices show a core approximately 60 A in diameter. Short helices are also associated with digestive vacuoles. Free RNP particles per se are never seen within digestive vacuoles, but intact short helices are frequently detected closely associated with the external membrane of digestive vacuoles. In some cases, continuation of externally intact helical forms could be related to filamentous material within the vacuole. Acid phosphomonoesterase activity could be demonstrated within digestive vacuoles where deposition of reaction product is especially intense on the filamentous material.  相似文献   

17.
Model calculations on the superstructure of uncondensed and condensed chromatin are presented. It is found that agreement between the calculated X-ray solution scattering patterns and the experimental observations can be reached with the assumptions that: a) The uncondensed chromatin fibre in solution has a helix-like structure, with a pitch of ca. 33.0 nm, a helical diameter of ca. 20.0 nm and 2.75–3.25 nucleosomes per turn. b) The most condensed state of the chromatin fibre in solution is best represented by a helix-like structure with ca. 2.56 nucleosomes per turn, a pitch of ca. 3.0 nm and a helical diameter of ca. 27.0 nm.  相似文献   

18.
Gramicidin is a polypeptide antibiotic that forms monovalent cation-specific channels in membrane environments. In organic solvents and in lipids containing unsaturated fatty acid chains, it forms a double-helical "pore" structure, in which two monomers are intertwined. This form of gramicidin can bind two cations inside its lumen, and the crystal structures of both an ion complex and an ion-free form have been determined. In this study, we have used circular dichroism (CD) spectroscopy to examine the binding mechanism and the binding constants (K1 and K2) of cations to gramicidin in the double helical form in methanol solution. The dramatic change in optical rotation in the far-ultraviolet CD spectrum of gramicidin provides a useful tool for monitoring the binding. The binding mechanism appears to involve a large conformation change associated with the binding of ions to the first of the two sites. The calculated values for the K1 binding constants for alkaline cations are considerably smaller than the K2 binding constants. The order of binding affinity for alkaline cations is similar to that for the helical dimer "channel" form of gramicidin, i.e., Cs+ approximately Rb+ > > K+ > Li+, but in comparison to the helical dimer form, the binding to double-helical dimers is dominated by a cation size-dependent conformational change in the gramicidin structure.  相似文献   

19.
We describe the results of a systematic study, using electron microscopy, of the effects of ionic strength on the morphology of chromatin and of H1-depleted chromatin. With increasing ionic strength, chromatin folds up progressively from a filament of nucleosomes at approximately 1 mM monovalent salt through some intermediate higher- order helical structures (Thoma, F., and T. Koller, 1977, Cell 12:101- 107) with a fairly constant pitch but increasing numbers of nucleosomes per turn, until finally at 60 mM (or else in approximately 0.3 mM Mg++) a thick fiber of 250 A diameter is formed, corresponding to a structurally well-organized but not perfectly regular superhelix or solenoid of pitch approximately 110 A as described by Finch and Klug (1976, Proc. Natl. Acad. Sci. U.S.A. 73:1897-1901). The numbers of nucleosomes per turn of the helical structures agree well with those which can be calculated from the light-scattering data of Campbell et al. (1978, Nucleic Acids Res. 5:1571-1580). H1-depleted chromatin also condenses with increasing ionic strength but not so densely as chromatin and not into a definite structure with a well-defined fiber direction. At very low ionic strengths, nucleosomes are present in chromatin but not in H1-depleted chromatin which has the form of an unravelled filament. At somewhat higher ionic strengths (greater than 5 mM triethanolamine chloride), nucleosomes are visible in both types of specimen but the fine details are different. In chromatin containing H1, the DNA enters and leaves the nucleosome on the same side but in chromatin depleted of H1 the entrance and exit points are much more random and more or less on opposite sides of the nucleosome. We conclude that H1 stabilizes the nucleosome and is located in the region of the exit and entry points of the DNA. This result is correlated with biochemical and x-ray crystallographic results on the internal structure of the nucleosome core to give a picture of a nucleosome in which H1 is bound to the unique region on a complete two-turn, 166 base pair particle (Fig. 15). In the formation of higher-order structures, these regions on neighboring nucleosomes come closer together so that an H1 polymer may be formed in the center of the superhelical structures.  相似文献   

20.
The RecA protein of Escherichia coli plays essential roles in homologous recombination and restarting stalled DNA replication forks. In vitro, the protein mediates DNA strand exchange between single-stranded (ssDNA) and homologous double-stranded DNA (dsDNA) molecules that serves as a model system for the in vivo processes. To date, no high-resolution structure of the key intermediate, comprised of three DNA strands simultaneously bound to a RecA filament (RecA-tsDNA complex), has been reported. We present a systematic characterization of the helical geometries of the three DNA strands of the RecA-tsDNA complex using fluorescence resonance energy transfer (FRET) under physiologically relevant solution conditions. FRET donor and acceptor dyes were used to label different DNA strands, and the interfluorophore distances were inferred from energy transfer efficiencies measured as a function of the base-pair separation between the two dyes. The energy transfer efficiencies were first measured on a control RecA-dsDNA complex, and the calculated helical parameters (h approximately 5 A, Omega(h) approximately 20 degrees ) were consistent with structural conclusions derived from electron microscopy (EM) and other classic biochemical methods. Measurements of the helical parameters for the RecA-tsDNA complex revealed that all three DNA strands adopt extended and unwound conformations similar to those of RecA-bound dsDNA. The structural data are consistent with the hypothesis that this complex is a late, post-strand-exchange intermediate with the outgoing strand shifted by about three base-pairs with respect to its registry with the incoming and complementary strands. Furthermore, the bases of the incoming and complementary strands are displaced away from the helix axis toward the minor groove of the heteroduplex, and the bases of the outgoing strand lie in the major groove of the heteroduplex. We present a model for the strand exchange intermediate in which homologous contacts preceding strand exchange arise in the minor groove of the substrate dsDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号