首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The effect of potato plant (Solanum tuberosum L., cv. Desnitsa) transformation with the desA gene from Synechocystis sp. PCC 6803, encoding Δ12 acyl-lipid desaturase, on the development of plant tolerance to oxidative stress was studied. To initiate oxidative stress, plants were treated with 1 mM paraquat; this treatment enhanced oxidative processes in both wild-type and transformed potato plants via the activation of superoxide anion-radical generation. This resulted in the activated oxidation of membrane lipids and the formation of a great amount of fatty acids with coupled double bonds (conjugated dienes, CD), further breakdown of lipid molecules, and enhanced production of MDA in tissues of wild-type and transformed plants. The characteristics of oxidative stress, including lipid peroxidation, were less pronounced in transformants as compared with wild-type plants. After treatment with paraquat, activities of main antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) were much higher in wild-type than in transformed plants. Thus, expression of inserted heterologous desA gene for Δ12 acyl-lipid desaturase in potato plants resulted in improved tolerance of transformants to oxidative stress due to the more efficient maintenance of stable cell membrane structure functioning, and this permits prevention of electron “jump” to oxygen and, as a result, of accelerated ROS generation. More developed and regularly arranged chloroplast membrane system in transformants may also favor their improved tolerance.  相似文献   

2.
The effects of potato (Solanum tuberosum L., cv. Desnitsa) plant transformation with the desA gene encoding Δ12-acyl-lipid desaturase from Synechocystis sp. PCC 6803 on the regulation of free-radical processes in relation to plant tolerance to hypothermia are considered. It was shown that the content of polyunsaturated fatty acids (PUFA) in transformed plants was higher than in wild-type ones. In particular, the content of linoleic acid in transformants was higher by 35% and the content of linolenic acid was by 41% higher than in untransformed plants. In addition, transformation induced an increase in the absolute content of C16-PUFA and on the whole resulted in a marked accumulation of membrane lipids. As judged from the values of the damage index and the ratio of photosynthesis to respiration in wild-type and transformed plants under cold treatment, these changes in lipid metabolism favored the protection of coupling membranes, thus preventing plants against free-radical oxidation under low-temperature stress. As a result, the intensity of oxidative stress in transformed plants was much lower than in wild-type ones, whereas antioxidant enzymes (superoxide dismutase, catalase, peroxidase) were not substantially activated under hypothermia.  相似文献   

3.
Transgenic (DesA-LicBM3) potato (Solanum tuberosum L., cv. Desnitsa) plants expressing gene encoding Δ12 acyl-lipid desaturase from Synechosystis sp. PCC 6803 were obtained. A significant increase in the relative content of polyunsaturated (linoleic and linolenic) fatty acids in transformants as compared with original genotype was demonstrated. The improved resistance of transgenic plants to late blight causal agent (Phytophthora infestans) as compared with original cultivar was observed.  相似文献   

4.
We investigated the changes in the total activity of superoxide dismutase (SOD) and the role of its isoforms in hardening potato (Solanum tuberosum L., cv. Desnitsa) plants of wild type and transformed with desA gene of Δ12-acyl-lipid desaturase from Synechocystis sp. PCC 6803. Hydroponically grown 8-week-old plants were exposed for six days to hardening temperature of 5°C. Before chilling, the total SOD activity in the transformed plants was somewhat greater than in the control plants. By the first day of hardening, SOD activity in both potato genotypes rose almost 1.5 times; however, the absolute value of SOD activity was considerably greater in the transformed plants. Subsequently, the total SOD activity in both genotypes decreased and by the end of the 6th day, it almost returned to the initial level. Electrophoretic and inhibitor analyses of potato plants revealed three types of SOD with one isoform of Mn-SOD, four isoforms of Fe-SOD, and two isoforms of Cu/Zn-SOD. In both genotypes, Fe-SOD3 manifested the greatest activity before chilling and in the course of hardening. Such changes in SOD activity corresponded to the rate of generation of superoxide anion radical and elevation of the content of products of peroxide oxidation of lipids (POL). Our data suggest that in the course of hardening of cold-resistant potato plants, the total SOD activity changed mostly due to Fe-SOD3 and to some extent as a result of elevated Cu/Zn-SOD2 activity, which was particularly evident at the beginning of hardening and more pronounced in the transformed plants. We assume that such temporal pattern is related to a greater rate of superoxide anion generation in the transformed plants as compared with control plants.  相似文献   

5.
6.
Effects of the desA gene from the cyanobacterium Synechocystis sp. encoding Δ12 acyl-lipid desaturase and increasing the level of unsaturated fatty acids (linoleic acid (18:2) primarily) in membrane lipids, which was inserted into potato (Solanum tuberosum L., cv. Desnitsa) plants, on chloroplast ultrastructure and plant tolerance to low temperatures were studied. The main attention was focused on modifications in the chloroplast structure and their possible relation to potato plant tolerance to oxidative and low-temperature stresses under the influence to their transformation with the Δ12 acyl-lipid desaturase gene from cyanobacterium (desA-licBM3-plants). Morphometric analysis showed that, in comparison with wild-type (WT) plants, in desA-licBM3-plants the number of grana in chloroplasts increased substantially. The total number of thylakoids in transformant chloroplasts was almost twice higher than in WT plants. The number of plastoglobules per chloroplast of transformed plants increased by 25%. A marked increase in the number of grana, total number of thylakoids, and the number of plastoglobules in chloroplasts of desA-licBM3-plants indicates their more intense lipid metabolism, as compared with WT plants, and this resulted in the conservation of some part of lipids in plastoglobules. In addition, the expression of heterological desA gene encoding Δ12 acyl-lipid desaturase positively influenced stabilization of not only structure but also functioning of chloroplast membranes, thus preventing a transfer of electrons from the ETR to oxygen and subsequent ROS generation at hypothermia. This was confirmed by the analysis of the rate of superoxide anion generation in tested genotypes.  相似文献   

7.
8.
As a response to central nervous system injury, astrocytes become reactive. Two cellular hallmarks of reactive gliosis are hypertrophy of astrocyte processes and upregulation of intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP), vimentin, nestin, and synemin. Astrocytes in mice devoid of GFAP and vimentin (GFAP ?/? Vim ?/?) do not form cytoplasmic intermediate filaments. GFAP ?/? Vim ?/? mice develop larger infarcts after ischemic stroke (Li et al. in J Cereb Blood Flow Metab 28(3):468–481, 2008). Here, we attempted to analyze the underlying mechanisms using oxygen–glucose deprivation (OGD), an in vitro ischemia model, examining a potential link between astrocyte intermediate filaments and reactive oxygen species (ROS). We observed a reorganization of the intermediate filament network in astrocytes exposed to OGD. ROS accumulation was higher in GFAP ?/? Vim ?/? than wild-type astrocytes when exposed to OGD followed by reperfusion or when exposed to hydrogen peroxide. These results indicate that the elimination of ROS is impaired in the absence of the intermediate filament system. Compared to wild-type astrocytes, GFAP ?/? Vim ?/? astrocytes exposed to OGD and reperfusion exhibited increased cell death and conferred lower degree of protection to cocultured neurons. We conclude that the astrocyte intermediate filament system is important for the cell response to oxidative stress induced by OGD followed by reperfusion.  相似文献   

9.
Cisplatin (CDDP) is a chemotherapeutic agent that produces nephrotoxicity associated with oxidative/nitrosative stress. α-Mangostin (α-M) is a xanthone extracted from mangosteen with antioxidant and anti-inflammatory properties. The purpose of this study was to evaluate the renoprotective effect of α-M on the CDDP-induced nephrotoxicity. α-M was administered (12.5 mg/kg/day, i.g.) for 10 days (7 days before and 3 days after CDDP injection). On day 7, rats were treated with a single injection of CDDP (7.5 mg/Kg, i.p.); 3 days after the rats were killed. α-M attenuated renal dysfunction, structural damage, oxidative/nitrosative stress, decrease in catalase expression and increase in mRNA levels of tumour necrosis factor alpha and transforming growth factor beta. In conclusion the renoprotective effect of α-M on CDDP-induced nephrotoxicity was associated with the attenuation in oxidative/nitrosative stress and inflammatory and fibrotic markers and preservation of catalase activity.  相似文献   

10.
Tobacco plants (Nicotiana tabacum L.) transformed with the desC gene for acyl-lipid Δ9-desaturase from a thermophilic cyanobacterium Synechococcus vulcanus were cultivated on the agarized Murashige and Skoog medium at 22°C and a 16-h photoperiod. Tobacco plants transformed with an empty binary vector pGA482 served as the control. The investigations showed that, in contrast to the control, transgenic plants maintained a higher activity of antioxidant enzymes during 2-h incubation at 2°C; as a result, these plants resisted more efficiently the accumulation of reactive oxygen species and reduced the rate of the lipid peroxidation. The activity of antioxidant enzymes in the transformed plants is apparently related to the operation of the introduced desC gene for acyl-lipid Δ9-desaturase because the enhanced activity of the latter increased the relative content of polyunsaturated FAs in membrane lipids and in this way promoted the liquid state of membranes during the chilling period. These changes helped preserve the cellular homeostasis and thereby maintain the steady synthesis of antioxidant enzymes at hypothermic conditions; as a result, cold resistance of transformed tobacco plants increased.  相似文献   

11.
Solar UV-B (280–315 nm) radiation is a developmental signal in plants but may also cause oxidative stress when combined with other environmental factors. Using computer modeling and in solution experiments we show that UV-B is capable of photosensitizing hydroxyl radical production from hydrogen peroxide. We present evidence that the oxidative effect of UV-B in leaves is at least twofold: (i) it increases cellular hydrogen peroxide concentrations, to a larger extent in pyridoxine antioxidant mutant pdx1.3-1 Arabidopsis and; (ii) is capable of a partial photo-conversion of both ‘natural’ and ‘extra’ hydrogen peroxide to hydroxyl radicals. As stress conditions other than UV can increase cellular hydrogen peroxide levels, synergistic deleterious effects of various stresses may be expected already under ambient solar UV-B.  相似文献   

12.
In this work, we expressed an Arabidopsis thaliana-coded protein (AKR4C9) in transgenic barley to study its enzymatic activity and to enhance the reactive aldehyde neutralizing capacity (part of the oxidative stress tolerance) of transgenic plants. Total leaf protein was extracted from transgenic plants expressing either C or N-terminally His-tagged aldo–keto reductase (AKR) enzyme and purified by affinity chromatography. The Arabidopsis-coded enzyme showed moderate activity against the synthetic reactive aldehyde, glutaraldehyde, and low but detectable enzyme activity against fructose with a low Michaelis–Menten constant (Km value). Activity of the C and the N-terminally His-tagged AKRs were found to be in the same range. Glutaraldehyde was also tested in vivo by spraying onto the leaves of the plants. The reactive aldehyde tolerance of both wild type and transgenic plants, as well as the general physiological effects of this reactive aldehyde treatment were evaluated. The growth rate was found to decrease in all (both wild type and transgenic) plants. The high AKR-expressing transgenic plants showed a lower respiratory rate, and they also showed higher fresh weight, higher chlorophyll content and photosynthetic activity, indicating a higher reactive aldehyde tolerance. Cadmium (Cd) treatment was also performed to validate this result. Cd caused strong lipid peroxidation; however, the Arabidopsis enzyme lowered the reactive aldehyde content as expected. This is the first report in which kinetic parameters of the fructose reduction by the stress inducible plant AKR enzyme are presented. Furthermore, data on the effects of a reactive aldehyde treatment on intact plants are also provided.  相似文献   

13.
Increasing the oleic to linoleic acid ratio (O/L) in peanut has positiveeffects on peanut quality and its nutritional value. 12-Fattyacid desaturases (12-Fad) have been targeted as logicalcandidates controlling the high oleate trait. A previous study using genomicDNA identified an insertion and a polymorphism resulting in an amino acid changeassociated with the high oleate trait in Spanish-type peanut cultivars. Theobjectives of this research were to use RT-PCR to confirm that the SingleNucleotide Polymorphims (SNPs) identified by analysis of genomic DNA wereexpressed, and to determine if expression patterns for 12-Fadwere the same in both seeds and leaves. A polymorphic region of the12-Fad containing a series of nucleotide changes wasamplified, cloned, and sequenced from mRNA of 155 clones of two parental linesand their independent derived backcross lines (IDBLs). The latter differed intheir oleic to linoleic ratio. Data indicated that the Ainsertion and the amino acid change were expressed in both leaf and seed tissue of thehigh and low-intermediate O/L genotypes. It is postulated that several copiesof the 12-Fad are present in the genome. It is reasonable toconclude that total activity, and ultimately the O/L ratio, is dependent on thenumber of functional copies. The results provide the basis for an assay toscreen for the high O/L ratio at the molecular level. We also report thepresence of another isozyme of 12-Fad with high homology tosoybean isozyme 2 that was expressed in seeds. These authors contributed equally to this work  相似文献   

14.
Two truncated Bacillus thuringiensis -endotoxin genes, belonging to the classes cry1Ab and cry1B, and both coding for N-terminal toxic fragments of the corresponding crystal proteins, were translationally fused. Expression of the fusion gene driven by the cry1C promoter in Escherichia coli at a very high level resulted in a protein with enhanced toxicity to the diamondback moth (Plutella xylostella).  相似文献   

15.

Background

Brain lipid peroxidation has long been considered a potential therapeutic target for Alzheimer's disease (AD). β-sitosterol (BS), a plant sterol that is prevalent in plant plasma membrane, has been suggested to have antioxidant activity. Previous studies have demonstrated that dietary BS can enter the brain and accumulates in the plasma membrane of brain cells. However, it is unknown whether and how BS exerts its antioxidant activity in plasma membrane.

Methods

To incorporate BS into the plasma membrane in vitro, HT22 cells and primarily cultured hippocampal cells were supplemented with BS using 2-hydroxypropyl-β-cyclodextrin (HPβCD) as a carrier. The present study then tested the antioxidant effect of membrane BS against glucose oxidase (GOX)-induced oxidative stress and lipid peroxidation, and whether the antioxidant effect of membrane BS was associated with estrogen receptor (ER)-mediated phosphatidyl inositol 3-kinase (PI3K)/glycogen synthase kinase 3 (GSK3β) signaling.

Results

Incorporation of BS into cell membrane prevented GOX-induced oxidative stress and lipid peroxidation, which could be suppressed by the ER antagonists and PI3K inhibitor. Additional experiments showed that incorporation of BS into cell membrane induced an up-regulation of PI3K activity and a recruitment of PI3K to lipid rafts, which could be inhibited by the ER antagonist. Membrane BS also increased the expression of p-GSK3β, which could be suppressed in the presence of the ER antagonist and PI3K inhibitor.

General significance

Given that BS is prevalent in foods such as plant oil, the results provide a better understanding of the beneficial effects of these BS-enriched nutrients on neurodegenerative diseases such as AD.  相似文献   

16.
17.
 Powdery mildew caused by Blumeria graminis DC. f. sp. triticiém. Marchal is an important disease of wheat (Triticum aestivum L. em Thell). We report here the identification of three random amplified polymorphic DNA (RAPD) markers closely linked to a gene for resistance to B. graminis in wheat. RAPD-PCR (polymerase chain reaction) analysis was conducted using bulked segregant analysis of closely related lines developed from a segregating F5 family. The F5 family was derived from a cross between the susceptible cultivar Clark and the resistant line Zhengzhou 871124. Genetic analysis indicated that resistance of Zhengzhou 871124 to powdery mildew is conferred by the gene Pm1. After performing RAPD-PCR analysis with 1300 arbitrary 10-mer primers and agarose-gel electrophoresis, two RAPD markers, UBC320420 and UBC638550, were identified to be co-segregating with the disease resistance. No recombinants were observed between either of the RAPD markers and the gene for resistance to powdery mildew after analysis of 244 F2 plants. The third RAPD marker, OPF12650, was identified with denaturing gradient-gel electrophoresis (DGGE), and was determined to be 5.4±1.9 cM from the resistance gene. UBC320420 and UBC638550 were present in wheat powdery mildew differential lines carrying the gene Pm1, suggesting linkage between these markers and the Pm1 resistance gene. Co-segregation between Pm1 and the two markers UBC320420 and UBC638550 was confirmed in a segregating population derived from a cross with CI14114, the wheat differential line carrying Pm1. The method of deriving closely related lines from inbred families that are segregating for a trait of interest should find wide application in the identification of DNA markers linked to important plant genes. The RAPD marker UBC638550 was converted to a sequence tagged site (STS). RAPD markers tightly linked to target genes may facilitate selection and enable gene pyramiding for powdery mildew resistance in wheat breeding programs. Received: 10 December 1995 / Accepted: 13 September 1996  相似文献   

18.
19.
Homeoviscous adaptation in poikilotherms is based in the regulation of the level of desaturation of fatty acids, variation in phospholipids head groups and sterol content in the membrane lipids, in order to maintain the membrane fluidity in response to changes in environmental temperature. Increased proportion of unsaturated fatty acids is thought to be the main response to low-temperature acclimation, which is mostly achieved by fatty acid desaturases. Genome analysis of the ciliate Tetrahymena thermophila and a gene knockout approach has allowed us to identify one Δ12 FAD and to study its activity in the original host and in a yeast heterologous expression system. The “PUFA index” -relative content of polyunsaturated fatty acids compared to the sum of saturated and monounsaturated fatty acid content- was ~57% lower at 15 °C and 35 °C in the Δ12 FAD gene knockout strain (KOΔ12) compared to WT strain. We characterized the role of T. thermophila Δ12 FAD on homeoviscous adaptation and analyzed its involvement in cellular growth, cold stress response, and membrane fluidity, as well as its expression pattern during temperature shifts. Although these alterations allowed normal growth in the KOΔ12 strain at 30 °C or higher temperatures, growth was impaired at temperatures of 20 °C or lower, where homeoviscous adaptation is impaired. These results stress the importance of Δ12 FAD in the regulation of cold adaptation processes, as well as the suitability of T. thermophila as a valuable model to investigate the regulation of membrane lipids and evolutionary conservation and divergence of the underlying mechanisms.  相似文献   

20.
The present study was aimed to evaluate the radioprotective effect of ferulic acid (FA), a naturally occurring plant flavonoid in terms of DNA damage and damage related alterations of repair pathways by gamma radiation. FA was administered at a dose of 50?mg/kg body weight for five consecutive days prior to exposing the swiss albino mice to a single dose of 10?Gy gamma radiation. Ionising radiation induces oxidative damage manifested by decreased expression of Cu, Zn-SOD (SOD stands for super oxide dismutase), Mn-SOD and catalase. Gamma radiation promulgated reactive oxygen species (ROS) mediated DNA damage and modified repair pathways. ROS enhanced nuclear translocation of p53, activated ATM (ataxia telangiectasia-mutated protein), increased expression of GADD45a (growth arrest and DNA-damage-inducible protein) gene and inactivated Non homologous end joining (NHEJ) repair pathway. The comet formation in irradiated mice peripheral blood mononuclear cells (PBMC) reiterated the DNA damage in IR exposed groups. FA pretreatment significantly prevented the comet formation and regulated the nuclear translocation of p53, inhibited ATM activation and expression of GADD45a gene. FA promoted the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and activated NHEJ repair pathway to overcome ROS mediated oxidative stress and DNA damage. Therefore, the current study stated that FA can challenge the oxidative stress by (i) inducing nuclear translocation of Nrf2, (ii) scavenging ROS, and (iii) activating NHEJ DNA repair process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号