首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specific signals mediating the activation of microglia and astrocytes as a prelude to, or consequence of, CNS inflammation continue to be defined. We investigated TLRs as novel receptors mediating innate immune responses in human glial cells. We find that microglia express mRNA for TLRs 1-9, whereas astrocytes express robust TLR3, low-level TLR 1, 4, 5, and 9, and rare-to-undetectable TLR 2, 6, 7, 8, and 10 mRNA (quantitative real-time PCR). We focused on TLRs 3 and 4, which can signal through both the MyD88-dependent and -independent pathways, and on the MyD88-restricted TLR2. By flow cytometry, we established that microglia strongly express cell surface TLR2; TLR3 is expressed at higher levels intracellularly. Astrocytes express both cell surface and intracellular TLR3. All three TLRs trigger microglial activation upon ligation. TLR3 signaling induces the strongest proinflammatory polarizing response, characterized by secretion of high levels of IL-12, TNF-alpha, IL-6, CXCL-10, and IL-10, and the expression of IFN-beta. CXCL-10 and IL-10 secretion following TLR4 ligation are comparable to that of TLR3; however, other responses were lower or absent. TLR2-mediated responses are dominated by IL-6 and IL-10 secretion. Astrocytes respond to TLR3 ligation, producing IL-6, CXCL-10, and IFN-beta, implicating these cells as contributors to proinflammatory responses. Initial TLR-mediated glial activation also regulates consequent TLR expression; while TLR2 and TLR3 are subject to positive feedback, TLR4 is down-regulated in microglia. Astrocytes up-regulate all three TLRs following TLR3 ligation. Our data indicate that activation of innate immune responses in the CNS is not homogeneous but rather tailored according to cell type and environmental signal.  相似文献   

2.
Microglia are the resident macrophage-like population in the CNS. Microglia remain quiescent until injury or infection activates the cells to perform effector inflammatory and APC functions. Our previous studies have shown that microglia infected with a neurotropic strain of Theiler's murine encephalomyelitis virus secreted innate immune cytokines and up-regulated costimulatory molecules and MHC class II, enabling the cells to present viral and myelin Ags to CD4+ T cells. Recently, TLRs have been shown to recognize pathogen-associated molecular patterns and initiate innate immune responses upon interaction with infectious agents. We examined TLR expression on brain microglia and their functional responses upon stimulation with various TLR agonists. We report that mouse microglia express mRNA for all of the recently identified TLRs, TLR1-9, used for recognition of bacterial and viral molecular patterns. Furthermore, stimulation of quiescent microglia with various TLR agonists, including LPS (TLR4), peptidoglycan (TLR2), polyinosinic-polycytidylic acid (TLR3), CpG DNA (TLR9), and infection with viable Theiler's murine encephalomyelitis virus, activated the cells to up-regulate unique patterns of innate and effector immune cytokines and chemokines at the mRNA and protein levels. In addition, TLR stimulation activated up-regulation of MHC class II and costimulatory molecules, enabling the microglia to efficiently present myelin Ags to CD4+ T cells. Thus, microglia appear to be a unique and important component of both the innate and adaptive immune response, providing the CNS with a means to rapidly and efficiently respond to a wide variety of pathogens.  相似文献   

3.
Postnatal development of S-Ag and GFAP immunoreactivity in the in situ pineal glands of golden hamsters and gerbils was examined using the avidin-biotin-peroxidase immunohistochemical technique. S-Ag was present in the gerbil pineal gland on the first postnatal day (P1), whereas it did not appear in the hamster pineal until P6. GFAP-immunoreactive astrocytes were first observed in the hamster pineal gland on P7 and in the gerbil pineal gland on P10. The number of S-Ag-immunoreactive pinealocytes and GFAP-immunoreactive astrocytes in the pineal glands of hamsters and gerbils increased with increasing age from P7 to 3 weeks. By 4 weeks, strong S-Ag and GFAP immunoreactivity was observed in both hamster and gerbil pineal glands. GFAP-immunoreactive stellate astrocytes were distributed evenly throughout the gerbil superficial pineal gland, but they were more often located in the peripheral region of the hamster superficial pineal. For the pineal grafts, pineal glands from neonatal (3-5 day old) hamsters were transplanted into the third cerebral ventricle (infundibular recess or posterior third ventricle) or beneath the renal capsule of adult male hamsters. S-Ag immunoreactivity appeared in the pineal grafts within 1 week following transplantation. By 4 weeks the pineal grafts showed strong S-Ag immunoreactivity which was maintained until at least 12 weeks after transplantation. The time course of glial cell maturation in the cerebroventricular pineal grafts is generally parallel to the hamster pineal gland in situ before 4 weeks. By 12 weeks, however, more astrocytes differentiated and developed GFAP-immunoreactivity in the pineal grafts than in the in situ pineals. These studies have described the postnatal development of S-Ag and GFAP immunoreactivity in in situ pineal glands and in neonatal pineal grafts.  相似文献   

4.
TNF, an important mediator of inflammatory and innate immune responses, can be regulated by binding to soluble TNF receptors. The 55-kDa type 1 TNFR (TNFR1), the key receptor for TNF signaling, is released to the extracellular space by two mechanisms, the inducible cleavage and shedding of 34-kDa soluble TNFR1 (sTNFR1) ectodomains and the constitutive release of full-length 55-kDa TNFR1 within exosome-like vesicles. The aim of this study was to identify and characterize TLR signaling pathways that mediate TNFR1 release to the extracellular space. To our knowledge, we demonstrate for the first time that polyinosinic-polycytidylic acid [poly (I:C)], a synthetic dsRNA analogue that signals via TLR3, induces sTNFR1 shedding from human airway epithelial (NCI-H292) cells, whereas ligands for other microbial pattern recognition receptors, including TLR4, TLR7, and nucleotide-binding oligomerization domain containing 2, do not. Furthermore, poly (I:C) selectively induces the cleavage of 34-kDa sTNFR1 ectodomains but does not enhance the release of full-length 55-kDa TNFR1 within exosome-like vesicles. RNA interference experiments demonstrated that poly (I:C)-induced sTNFR1 shedding is mediated via activation of TLR3-TRIF-RIP1 signaling, with subsequent activation of two downstream pathways. One pathway involves the dual oxidase 2-mediated generation of reactive oxygen species, and the other pathway is via the caspase-mediated activation of apoptosis. Thus, the ability of dsRNA to induce the cleavage and shedding of the 34-kDa sTNFR1 from human bronchial epithelial cells represents a novel mechanism by which innate immune responses to viral infections are modulated.  相似文献   

5.
Microglia are the resident immune cells in the central nervous system and key players against pathogens and injury. However, persistent microglial activation often exacerbates pathological damage and has been implicated in many neurological diseases. Despite their pivotal physiological and pathophysiological roles, how the survival and death of activated microglia is regulated remains poorly understood. We report here that microglia activated through Toll-like receptors (TLRs) undergo RIP1/RIP3-dependent programmed necrosis (necroptosis) when exposed to the pan caspase inhibitor zVAD-fmk. Although zVAD-fmk and the caspase-8 inhibitor IETD-fmk had no effect on unstimulated primary microglia, they markedly sensitized microglia to TLR1/2,3,4,7/8 ligands or TNF treatment, triggering programmed necrosis that was completely blocked by R1P1 kinase inhibitor necrostatin-1. Interestingly, necroptosis induced by TLR ligands and zVAD was restricted to microglial cells and was not observed in astrocytes, neurons or oligodendrocytes even though they are known to express certain TLRs. Deletion of genes encoding TNF or TNFR1 failed to prevent lipopolysaccharide- and poly(I:C)-induced microglial necroptosis, unveiling a TNF-independent programmed necrosis pathway in TLR3- and TLR4-activated microglia. Microglia from mice lacking functional TRIF were fully protected against TLR3/4 activation and zVAD-fmk-induced necrosis, and genetic deletion of rip3 also prevented microglia necroptosis. Activation of c-jun N-terminal kinase and generation of specific reactive oxygen species were downstream signaling events required for microglial cell death execution. Taken together, this study reveals a robust RIP3-dependent necroptosis signaling pathway in TLR-activated microglia upon caspase blockade and suggests that TLR signaling and programmed cell death pathways are closely linked in microglia, which could contribute to neuropathology and neuroinflammation when dysregulated.  相似文献   

6.
7.
The role of the pineal gland in regulating immune function has been extensively investigated. However, there is little information about possible feedback mechanisms of immunological factors on pineal gland neuroendocrine functions. Therefore, experiments were designed to test the effects of cytokines (interferon-gamma, IFN-gamma, interleukin-1 beta, IL-1 beta; tumor necrosis factor-alpha, TNF-alpha; transforming growth factor-beta 1, TGF-beta 1) on pinealocytes and the role of pineal microglia in mediating these cytokine effects in the pineal gland of the rat. Our studies showed that IFN-gamma enhanced 5-hydroxytryptamine (5-HT) content (measured by high-performance liquid chromatography, HPLC) and increased pinealocyte process length in pineal cultures. IL-1 beta treatment decreased 5-HT content in both cell and organ culture, but exhibited no effect on pinealocyte process length. 5-HT content and process length were decreased by TNF-alpha treatment. IFN-gamma and IL-1 beta exhibited no significant effect in the absence of microglia in cell cultures. In contrast, TNF-alpha caused a further decline in 5-HT content even in the absence of microglia in the cultures. The effects of TNF-alpha were probably due to toxic effects, since an increased number of pyknotic nuclei were observed in treated cultured explants. TGF-beta 1 treatment caused aggregation of pinealocytes in cultures and suppressed process length and 5-HT content. In conclusion, cytokine effects on pinealocytes may be mediated by microglia (IFN-gamma and IL-1 beta) or act directly on pinealocytes (TNF-alpha). The presence of IL-1 beta and TGF-beta 1 protein in the pineal gland and the suppressive effect of TGF-beta 1 on pinealocytes in cultures further suggest that endogenous cytokines play regulatory roles in response to peripheral homeostatic changes.  相似文献   

8.
Yi H  Patel AK  Sodhi CP  Hackam DJ  Hackam AS 《PloS one》2012,7(5):e36560
Recent evidence has implicated innate immunity in regulating neuronal survival in the brain during stroke and other neurodegenerations. Photoreceptors are specialized light-detecting neurons in the retina that are essential for vision. In this study, we investigated the role of the innate immunity receptor TLR4 in photoreceptors. TLR4 activation by lipopolysaccharide (LPS) significantly reduced the survival of cultured mouse photoreceptors exposed to oxidative stress. With respect to mechanism, TLR4 suppressed Wnt signaling, decreased phosphorylation and activation of the Wnt receptor LRP6, and blocked the protective effect of the Wnt3a ligand. Paradoxically, TLR4 activation prior to oxidative injury protected photoreceptors, in a phenomenon known as preconditioning. Expression of TNFα and its receptors TNFR1 and TNFR2 decreased during preconditioning, and preconditioning was mimicked by TNFα antagonists, but was independent of Wnt signaling. Therefore, TLR4 is a novel regulator of photoreceptor survival that acts through the Wnt and TNFα pathways.  相似文献   

9.
Rat pinealocytes receive noradrenergic innervation that stimulates melatonin synthesis. Besides melatonin, we showed previously that pinealocytes accumulate L-glutamate in microvesicles and secrete it through an exocytic mechanism. The secreted glutamate binds to the class II metabotropic glutamate receptor and inhibits norepinephrine-stimulated melatonin synthesis in neighboring pinealocytes through an inhibitory cyclic AMP cascade. In this study, it was found that, in addition to metabotropic receptors, pinealocytes express functional ionotropic receptors. RT-PCR and northern analyses indicated the expression of mRNA for GluR1, KA2, and NR2C in pineal gland. The presence of GluR1 protein was confirmed by immunological techniques, but neither KA2 nor NR2C was detected. Consistent with this observation, the presence of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainate, non-N-methyl-D-aspartate receptor agonists, transiently stimulated increased the intracellular Ca(2+) concentration of cultured pinealocytes, whereas N-methyl-D-aspartate did not. These responses were prevented by 6-cyano-7-nitroquinoxaline-2,3-dione, a selective antagonist for non-N-methyl-D-aspartate receptors, by L-type Ca(2+) channel blockers such as nifedipine, or by omitting Ca(2+) or Na(+) in the medium. In the presence of Ca(2+) and Na(+), (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainate evoked glutamate secretion from the cultured cells, which was prevented by 6-cyano-7-nitroquinoxaline-2,3-dione, L-type Ca(2+) channel blockers, type E or B botulinum neurotoxin, or incubation at <20 degrees C. These results strongly suggest that GluR1 is functionally expressed in pinealocytes and triggers microvesicle-mediated exocytosis of L-glutamate via activation of L-type Ca(2+) channels. It is possible that GluR1 participates in a signaling cascade that enhances and expands the L-glutamate signal throughout the pineal gland.  相似文献   

10.
The innate immune receptor Toll-like 4 (TLR4) is the receptor activated by lipopolysaccharide (LPS), and TLR4-LPS interaction is well known to induce an innate immune response, triggering sickness behavior. Within the brain, TLR4 is highly expressed in brain microglia, and excessive inflammation resulting from activation of this pathway in the brain has been implicated in depressive disorders and neurodegenerative pathologies. We hypothesized that blocking LPS-induced activation of TLR4 would prevent downstream immune signaling in the brain and suppress the induction of sickness behavior. We used interfering peptides to block TLR4 activation and confirmed their efficacy in preventing second messenger activation and cytokine production normally induced by LPS treatment. Further, these peptides blocked morphological changes in microglia that are typically induced by LPS. We also demonstrated that intraperitoneal (i.p.) injection of Tat-TLR4 interfering peptides prevented LPS-induced sickness behavior, as assessed in home cage behavior and with the intracranial self-stimulation paradigm. These newly synthesised peptides inhibit TLR4 signaling thereby preventing changes in behavior and motivation caused by inflammatory stimuli. These peptides highlight the roll of TLR4 and microglia morphology changes in sickness behavior, and thus may be of therapeutic value in limiting the deleterious impact of excessive inflammation in specific CNS pathologies.  相似文献   

11.
The purpose of this study was to determine structural and immunocytochemical changes taking place during the day and at night in developing sheep pineal gland under natural non-stimulatory photoperiods (summer solstice). Additionally, the diurnal cycle of plasma melatonin levels was charted and differences between diurnal and nocturnal pineal melatonin concentrations were analyzed. 36 ewes of three different ages were examined: infants (1-6 months old), pubertal and early fertile age (9-24 months old) and adults (36-60 months old). Plasma and pineal gland melatonin levels were higher in pubertal sheep than in infants or adults. Pubertal sheep pineal glands were also heavier, contained a larger number of pinealocytes and interstitial cells and displayed more evident innervation and vascularisation than infants or adults. There was no difference in the number of pinealocytes and interstitial cells between animals killed during daylight or at night. Gland weight, pinealocyte nuclear profile areas and plasma melatonin concentrations were all significantly higher at night than during the day.  相似文献   

12.
The activating immunoglobulin-like receptor, subfamily A, member 2 (LILRA2) is primarily expressed on the surface of cells of the innate immunity including monocytes, macrophages, neutrophils, basophils and eosinophils but not on lymphocytes and NK cells. LILRA2 cross-linking on monocytes induces pro-inflammatory cytokines while inhibiting dendritic cell differentiation and antigen presentation. A similar activating receptor, LILRA4, has been shown to modulate functions of TLR7/9 in dendritic cells. These suggest a selective immune regulatory role for LILRAs during innate immune responses. However, whether LILRA2 has functions distinct from other receptors of the innate immunity including Toll-like receptor (TLR) 4 and FcγRI remains unknown. Moreover, the effects of LILRA2 on TLR4 and FcγRI-mediated monocyte functions are not elucidated. Here, we show activation of monocytes via LILRA2 cross-linking selectively increased GM-CSF production but failed to induce IL-12 and MCP-1 production that were strongly up-regulated by LPS, suggesting functions distinct from TLR4. Interestingly, LILRA2 cross-linking on monocytes induced similar amounts of IL-6, IL-8, G-CSF and MIP-1α but lower levels of TNFα, IL-1β, IL-10 and IFNγ compared to those stimulated with LPS. Furthermore, cross-linking of LILRA2 on monocytes significantly decreased phagocytosis of IgG-coated micro-beads and serum opsonized Escherichia coli but had limited effect on phagocytosis of non-opsonized bacteria. Simultaneous co-stimulation of monocytes through LILRA2 and LPS or sequential activation of monocytes through LILRA2 followed by LPS led lower levels of TNFα, IL-1β and IL-12 production compared to LPS alone, but had additive effect on levels of IL-10 and IFNγ but not on IL-6. Interestingly, LILRA2 cross-linking on monocytes caused significant inhibition of TLR4 mRNA and protein, suggesting LILRA2-mediated suppression of LPS responses might be partly via regulation of this receptor. Taken together, we provide evidence that LILRA2-mediated activation of monocytes is significantly different to LPS and that LILRA2 selectively modulates LPS-mediated monocyte activation and FcγRI-dependent phagocytosis.  相似文献   

13.
Mast cells (MCs) control allergic reactions and contribute to protective innate immune responses through TLR4 activation. The tyrosine kinase Lyn is important to the high affinity IgE receptor (FcεRI) signal transduction system in MCs, but its role on the TLR4 signalling cascade is still elusive. Here, we characterized several TLR4-triggered responses in bone marrow-derived mast cells (BMMCs) from wild-type (WT) and Lyn(-/-) mice. We found that Lyn(-/-) MCs secreted lower amounts of TNF-α after LPS challenge when compared with WT cells. Lyn(-/-) BMMCs showed less MAPK, IκB phosphorylation and NF-κB nuclear translocation after TLR-4 triggering than WT cells. LPS-induced MAPK and inhibitor of IκB kinase (IKK) phosphorylation were importantly reduced in the absence of Lyn. A constitutive interaction between TNF receptor associated factor 6 (TRAF-6) and phosphorylated TGF-β-activated kinase (TAK-1) was observed in Lyn(-/-) BMMCs and this complex was insensitive to LPS addition. Lyn kinase was activated and associated to TRAF-6 shortly after LPS addition in WT MCs. Analyzing two local MC-dependent innate immune responses in?vivo, we found that Lyn positively controls early TNF-α production and immune cell recruitment after an intraperitoneal injection of LPS. Our results indicate that Lyn plays a positive role in TLR4-induced production of TNF-α in MCs controlling the activity of the TRAF-6/TAK-1 protein complex.  相似文献   

14.
Calcium is an important second messenger in the rat pineal gland, as well as cAMP. They both contribute to melatonin synthesis mediated by the three main enzymes of the melatonin synthesis pathway: tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase. The cytosolic calcium is elevated in pinealocytes following alpha(1)-adrenergic stimulation, through IP(3)-and membrane calcium channels activation. Nifedipine, an L-type calcium channel blocker, reduces melatonin synthesis in rat pineal glands in vitro. With the purpose of investigating the mechanisms involved in melatonin synthesis regulation by the L-type calcium channel, we studied the effects of nifedipine on noradrenergic stimulated cultured rat pineal glands. Tryptophan hydroxylase, arylalkylamine N-acetyltransferase and hydroxyindole-O-methyltransferase activities were quantified by radiometric assays and 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin contents were quantified by HPLC with electrochemical detection. The data showed that calcium influx blockaded by nifedipine caused a decrease in tryptophan hydroxylase activity, but did not change either arylalkylamine N-acetyltransferase or hydroxyindole-O-methyltransferase activities. Moreover, there was a reduction of 5-hydroxytryptophan, serotonin, N-acetylserotonin and melatonin intracellular content, as well as a reduction of serotonin and melatonin secretion. Thus, it seems that the calcium influx through L-type high voltage-activated calcium channels is essential for the full activation of tryptophan hydroxylase leading to melatonin synthesis in the pineal gland.  相似文献   

15.
Hydroxyindole-O-methyltransferase (HIOMT) is the enzyme involved in the last step of the melatonin synthesis pathway. Recently, a cDNA encoding HIOMT has been isolated from a rat pineal gland library. Using this cDNA, we developed a highly sensitive in situ hybridisation protocol to investigate the distribution of HIOMT mRNA in both the rat brain and dissociated pinealocytes maintained in primary cell culture. In the rat brain, HIOMT mRNA was only detected in the three parts of the pineal complex: the superficial pineal, the stalk and the deep pineal. No extra-pineal hybridisation labelling was observed. These results strongly suggest that melatonin synthesis also occurs in the deep part and the stalk of the pineal gland. HIOMT mRNA was markedly expressed in cultured pinealocytes. No particular subcellular area was observed to express HIOMT mRNA specifically, as the labelling was homogeneously distributed in the cytosol and in the axon-like processes. In conclusion, the use of in situ and in vitro hybridisation with a pineal riboprobe has detected notable HIOMT expression restricted to pinealocytes. Received: 26 June 1997 / Accepted: 15 September 1997  相似文献   

16.
The objective of this study was to develop a model for testing various hypotheses concerning possible mechanisms whereby electromagnetic fields might induce suppression of nighttime melatonin production in rodents. A published method for digesting freshly obtained pineal glands to the single cell level was modified, yielding better than 95% viability. An in vitro exposure facility developed for the Food and Drug Administration was used for 12-h overnight exposures of primary pinealocyte cultures to 0.05 mT, 60 Hz, vertical AC and 0.06 μT, DC fields. After exposure, cells were separated from the supernatant by centrifugation. Supernatant melatonin was measured by ELISA assays. Data from 10 experiments demonstrated an average 46% reduction in norepinephrine-induced production of melatonin in the pinealocytes. The results support the hypothesis that EM exposure can produce pineal gland melatonin suppression by affecting individual cells. Bioelectromagnetics 19:123–127, 1998. Published 1998 Wiley-Liss, Inc.  相似文献   

17.
Neuroinflammation and increased production of tumor necrosis factor (TNF) in the CNS have been implicated in many neurological diseases including white matter disorders periventricular leukomalacia and multiple sclerosis. However, the exact role of TNF in these diseases and how it mediates oligodendrocyte injury remain unclear. Previously, we demonstrated that lipopolysaccharide (LPS) selectively kills oligodendrocyte precursors (preOLs) in a non-cell autonomous fashion through the induction of TNF in mixed glial cultures. Here, we report that activation of oligodendroglial, but not astroglial and microglial, TNFR1 is required for LPS toxicity, and that astrocytes promote TNF-mediated preOL death through a cell contact-dependent mechanism. Microglia were the sole source for TNF production in LPS-treated mixed glial cultures. Ablation of TNFR1 in mixed glia completely prevented LPS-induced death of preOLs. TNFR1-expressing preOLs were similarly susceptible to LPS treatment when seeded into wildtype and TNFR1(-/-) mixed glial cultures, demonstrating a requirement for oligodendroglial TNFR1 in the cell death. Although exogenous TNF failed to cause significant cell death in enriched preOL cultures, it became cytotoxic when preOLs were in contact with astrocytes. Collectively, our results demonstrate oligodendroglial TNFR1 in mediating inflammatory destruction of preOLs and suggest a previously unrecognized role for astrocytes in promoting TNF toxicity to preOLs.  相似文献   

18.
The aim of the present study was to analyze the 24-h rhythm in plasma melatonin concentration and the day-night differences in synaptophysin expresion and ultrastructural characteristics of the pinealocytes in developing female sheep. Ewes of three different ages were examined: infantile (1-6 months old), pubertal and early fertile age (9-24 months old) and adult (36-60 months old). Experiments were conducted under natural non-stimulatory (long) and stimulatory (short) photoperiods. The obtained results were similar for both analyzed photoperiods. Plasma melatonin concentration, measured in samples obtained every 4 h, showed a similar pattern in the three age groups, with peak values at 02:00 h and troughs at 14:00 h. Mean value of plasma melatonin levels in 9-24 month-old sheep was significantly greater than that in younger or older sheep. The weight of pineal glands obtained at night (02:00 h) was significantly higher than in daylight (14:00 h). Pubertal and early fertile sheep had the largest pineal glands. The pineal volume, and the total number of pinealocytes per gland of 9-24 months-old sheep differed significantly from that of younger or older sheep. The pineal volume, and the mean volume of pinealocytes was significantly greater in animals killed at night. Number of pinealocytes did not vary between animals killed during daylight or at night. The mean volumen of pinealocytes did not show statistical differences between the age groups. In quantitative ultrastructural analysis of pinealocyte cells, the relative volume of mitochondria, rough endoplasmic reticulum and Golgi complexes was significantly greater in 9-24 month-old sheep and in animals killed at night. The relative volume of lipid droplets was highest in older sheep. Collectively, the data support the existence of developmental changes in pinealocyte morphology and quantity, partially in coincidence with a higher melatonin secretion rate.  相似文献   

19.
We investigated the effects of diazepam (DZP) and its three metabolites: nordiazepam (NZP), oxazepam (OZP), and temazepam (TZP) on pineal gland nocturnal melatonin secretion. We looked at the effects of benzodiazepines on pineal gland melatonin secretion both in vitro (using organ perifusion) and in vivo in male Wistar rats sacrificed in the middle of the dark phase. We also examined the effects of these benzodiazepines on in vivo melatonin secretion in the Harderian glands. Neither DZP (10-5-10-6 M) nor its metabolites (10-4-10-5 M) affected melatonin secretion by perifused rat pineal glands in vitro. In contrast, a 10-4 M suprapharmacological concentration of DZP increased melatonin secretion of perifused pineal glands by 70%. In vivo, a single acute subcutaneous administration of DZP (3 mg/kg body weight) significantly affected pineal melatonin synthesis and plasma melatonin levels, while administration of the metabolites under the same conditions did not. DZP reduced pineal melatonin content (-40%), N-acetyltransferase activity (-70%), and plasma melatonin levels (-40%), but had no affects on pineal hydroxyindole-O-methyltransferase activity. Neither DZP nor its metabolites affected Harderian gland melatonin content. Our results indicate that the in vivo inhibitory effect of DZP on melatonin synthesis is not due to the metabolism of DZP. The results also show that the control of melatonin production in the Harderian glands differs from that observed in the pineal gland.  相似文献   

20.
Intestinal epithelial cells (IECs) provide a physical and immunological barrier against enteric microbial flora. Toll-like receptors (TLRs), through interactions with conserved microbial patterns, activate inflammatory gene expression in cells of the innate immune system. Previous studies of the expression and function of TLRs in IECs have reported varying results. Therefore, TLR expression was characterized in human and murine intestinal sections, and TLR function was tested in an IEC line. TLR1, TLR2, and TLR4 are coexpressed on a subpopulation of human and murine IECs that reside predominantly in the intestinal crypt and belong to the enteroendocrine lineage. An enteroendocrine cell (EEC) line demonstrated a similar expression pattern of TLRs as primary cells. The murine EEC line STC-1 was activated with specific TLR ligands: LPS or synthetic bacterial lipoprotein. In STC-1 cells stimulated with bacterial ligands, NF-kappaB and MAPK activation was demonstrated. Furthermore, the expression of TNF and macrophage inhibitory protein-2 were induced. Additionally, bacterial ligands induced the expression of the anti-inflammatory gene transforming growth factor-beta. LPS triggered a calcium flux in STC-1 cells, resulting in a rapid increase in CCK secretion. Finally, conditioned media from STC-1 cells inhibited the production of nitric oxide and IL-12 p40 by activated macrophages. In conclusion, human and murine IECs that express TLRs belong to the enteroendocrine lineage. Using a murine EEC model, a broad range of functional effects of TLR activation was demonstrated. This study suggests a potential role for EECs in innate immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号