首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coral reefs world-wide are threatened by escalating local and global impacts, and some impacted reefs have shifted from coral dominance to a state dominated by macroalgae. Therefore, there is a growing need to understand the processes that affect the capacity of these ecosystems to return to coral dominance following disturbances, including those that prevent the establishment of persistent stands of macroalgae. Unlike many reefs in the Caribbean, over the last several decades, reefs around the Indo-Pacific island of Moorea, French Polynesia have consistently returned to coral dominance following major perturbations without shifting to a macroalgae-dominated state. Here, we present evidence of a rapid increase in populations of herbivorous fishes following the most recent perturbation, and show that grazing by these herbivores has prevented the establishment of macroalgae following near complete loss of coral on offshore reefs. Importantly, we found the positive response of herbivorous fishes to increased benthic primary productivity associated with coral loss was driven largely by parrotfishes that initially recruit to stable nursery habitat within the lagoons before moving to offshore reefs later in life. These results underscore the importance of connectivity between the lagoon and offshore reefs for preventing the establishment of macroalgae following disturbances, and indicate that protecting nearshore nursery habitat of herbivorous fishes is critical for maintaining reef resilience.  相似文献   

2.
The role of herbivorous fishes in maintaining low macroalgal cover was evaluated on coral reefs on several reef sites from Guadeloupe, either protected or not. Grazing by herbivorous fishes was assessed on different algal facies using fish-bite counts. Algal consumption by fish was estimated as well as algal production. Bite counts revealed that herbivorous fishes feed preferentially on algal turf and avoid brown macroalgae. The algal consumption varied between 0.4 and 2.8 g m−2 days−1 and was higher inside marine protected areas than outside. Comparison with algal production revealed that herbivorous fishes did not succeed in regulating algal growth. The insufficient number of grazers may lead to the dominance of stable assemblages of macroalgae on coral reefs, preventing the recovery of reef into previous coral-dominated ecosystems.  相似文献   

3.
Marginal coral reef systems may provide valuable insights into the nature of ecosystem processes in systems on the trajectory towards a phase shift to an alternate ecosystem state. This study investigates the process of herbivory in a marginal coral reef system in the Keppel Islands at the southern end of the Great Barrier Reef. Branching Acropora coral and the brown macroalga Lobophora variegata occupied up to 95% of the reef crest substratum at the three surveyed reefs. Feeding rates of herbivorous fishes and removal rates of Lobophora were directly quantified within areas of branching Acropora and on planar surfaces. Feeding rates by herbivorous fishes were habitat dependent with the highest bite rates being found in planar habitats for both Lobophora and the epilithic algal matrix (EAM) by 1–2 orders of magnitude, respectively. Feeding rates on Lobophora were, however, much lower than rates on the EAM. The low rates of Lobophora removal and significantly lower rates of herbivory in branching habitats were consistent with the high biomass of this brown alga throughout the Keppel Islands and with its distribution on reef crests, where Lobophora biomass was 20 times greater in branching than in planar habitats. This lack of feeding by herbivorous fishes within branching coral habitats in the Keppel Islands contrasts with the typical role of coral and topographic complexity on herbivores on coral reefs and highlights the potential for complex interactions between algae, corals and fishes on coral reefs. On marginal systems, herbivory may modify algal distributions but may be unable to contain the proliferation of algae such as Lobophora.  相似文献   

4.
Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2)), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1)), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.  相似文献   

5.
Apex predators are known to exert strong ecological effects, either through direct or indirect predator–prey interactions. Indirect interactions have the potential to influence ecological communities more than direct interactions as the effects are propagated throughout the population as opposed to only one individual. Indirect effects of apex predators are well documented in terrestrial environments, however there is a paucity of information for marine environments. Furthermore, manipulative studies, as opposed to correlative observations, isolating apex predator effects are lacking. Coral reefs are one of the most diverse ecosystems, providing a useful model system for investigating the ecological role of apex predators and their influence on lower trophic levels. Using predator models and transplanted macroalgae we examined the indirect effects of predators on herbivore foraging behaviour. We show that the presence of a model reef shark or large coral‐grouper led to a substantial reduction in bite rate and species richness of herbivorous fishes and an almost absolute localized cessation of macroagal removal, due to the perceived risk of predation. A smaller‐sized coral‐grouper also reduced herbivore diversity and activity but to a lesser degree than the larger model predators. These indirect effects of apex predators on the foraging behaviour of herbivores may have flow‐on effects on the biomass and distribution of macroalgae, and the functioning of coral reef ecosystems. This highlights that the ecological interactions and processes that contribute to ecosystem resilience may be more complex than previously assumed.  相似文献   

6.
Around the globe, coral reefs and other marine ecosystems are increasingly overfished. Conventionally, studies of fishing impacts have focused on the population size and dynamics of targeted stocks rather than the broader ecosystem-wide effects of harvesting. Using parrotfishes as an example, we show how coral reef fish populations respond to escalating fishing pressure across the Indian and Pacific Oceans. Based on these fish abundance data, we infer the potential impact on four key functional roles performed by parrotfishes. Rates of bioerosion and coral predation are highly sensitive to human activity, whereas grazing and sediment removal are resilient to fishing. Our results offer new insights into the vulnerability and resilience of coral reefs to the ever-growing human footprint. The depletion of fishes causes differential decline of key ecosystem functions, radically changing the dynamics of coral reefs and setting the stage for future ecological surprises.  相似文献   

7.
Coral reefs worldwide are under threat from various anthropogenic factors, including overfishing and pollution. A new study by Mumby et al. highlights the trophic relationships between humans, carnivorous and herbivorous fishes, and the potential role of no-take areas in maintaining vulnerable coral reef ecosystems. No-take areas, where fishing is prohibited, are vital tools for managing food webs, ecosystem function and the resilience of reefs, in a seascape setting that extends far beyond the boundaries of the reefs themselves.  相似文献   

8.
A healthy herbivore community is critical for the ability of a reef to resist and recover from severe disturbances and to regain lost coral cover (i.e., resilience). The densities of the two major herbivorous fish groups (the family Acanthuridae and scarine labrids) were comparatively studied for an inshore reef that was severely impacted by a mass coral bleaching event in 2010 and an unaffected reef within the same region. Densities were found to be significantly higher on the affected reef, most likely due to the high algal densities on that reef. However, densities of herbivores on both reefs were found to be on average about 1–2 orders of magnitude lower than previously published reports from some Pacific reefs and from Red Sea reefs in the Gulf of Aqaba and only slightly higher than Caribbean reefs. Thus, it is predicted that recovery for this reef and similarly affected reefs may be very slow. The protection of herbivores from overfishing and the introduction of other management strategies that maximize reef resilience in Saudi Arabian waters are highly recommended.  相似文献   

9.
Dramatic coral loss has significantly altered many Caribbean reefs, with potentially important consequences for the ecological functions and ecosystem services provided by reef systems. Many studies examine coral loss and its causes—and often presume a universal decline of ecosystem services with coral loss—rather than evaluating the range of possible outcomes for a diversity of ecosystem functions and services at reefs varying in coral cover. We evaluate 10 key ecosystem metrics, relating to a variety of different reef ecosystem functions and services, on 328 Caribbean reefs varying in coral cover. We focus on the range and variability of these metrics rather than on mean responses. In contrast to a prevailing paradigm, we document high variability for a variety of metrics, and for many the range of outcomes is not related to coral cover. We find numerous “bright spots,” where herbivorous fish biomass, density of large fishes, fishery value, and/or fish species richness are high, despite low coral cover. Although it remains critical to protect and restore corals, understanding variability in ecosystem metrics among low‐coral reefs can facilitate the maintenance of reefs with sustained functions and services as we work to restore degraded systems. This framework can be applied to other ecosystems in the Anthropocene to better understand variance in ecosystem service outcomes and identify where and why bright spots exist.  相似文献   

10.
Mortality is considered to be an important factor shaping the structure of coral reef fish communities, but data on the rate and nature of mortality of adult coral reef fishes are sparse. Mortality on coral reefs is intrinsically linked with predation, with most evidence suggesting that predation is highest during crepuscular periods. We tested this hypothesis using passive acoustic telemetry data to determine the time of day of potential mortality events (PMEs) of adult herbivorous reef fishes. A total of 94 fishes were tagged with acoustic transmitters, of which 43 exhibited a PME. Furthermore, we identified five categories of PMEs based on the nature of change in acoustic signal detections from tagged fishes. The majority of PMEs were characterised by an abrupt stop in detections, possibly as a result of a large, mobile predator. Overall, mortality rates were estimated to be approximately 59 % per year using passive acoustic telemetry. The time of day of PMEs suggests that predation was highest during the day and crepuscular periods and lowest at night, offering only partial support for the crepuscular predation hypothesis. Visually oriented, diurnal and crepuscular predators appear to be more important than their nocturnal counterparts in terms of predation on adult reef fishes. By timing PMEs, passive acoustic telemetry may offer an important new tool for investigating the nature of predation on coral reefs.  相似文献   

11.
The reef flat is one of the largest and most distinctive habitats on coral reefs, yet its role in reef trophodynamics is poorly understood. Evolutionary evidence suggests that reef flat colonization by grazing fishes was a major innovation that permitted the exploitation of new space and trophic resources. However, the reef flat is hydrodynamically challenging, subject to high predation risks and covered with sediments that inhibit feeding by grazers. To explore these opposing influences, we examine the Great Barrier Reef (GBR) as a model system. We focus on grazing herbivores that directly access algal primary productivity in the epilithic algal matrix (EAM). By assessing abundance, biomass, and potential fish productivity, we explore the potential of the reef flat to support key ecosystem processes and its ability to maintain fisheries yields. On the GBR, the reef flat is, by far, the most important habitat for turf‐grazing fishes, supporting an estimated 79% of individuals and 58% of the total biomass of grazing surgeonfishes, parrotfishes, and rabbitfishes. Approximately 59% of all (reef‐wide) turf algal productivity is removed by reef flat grazers. The flat also supports approximately 75% of all grazer biomass growth. Our results highlight the evolutionary and ecological benefits of occupying shallow‐water habitats (permitting a ninefold population increase). The acquisition of key locomotor and feeding traits has enabled fishes to access the trophic benefits of the reef flat, outweighing the costs imposed by water movement, predation, and sediments. Benthic assemblages on reefs in the future may increasingly resemble those seen on reef flats today, with low coral cover, limited topographic complexity, and extensive EAM. Reef flat grazing fishes may therefore play an increasingly important role in key ecosystem processes and in sustaining future fisheries yields.  相似文献   

12.
Consumers and prey diversity, their interactions, and subsequent effects on ecosystem function are important for ecological processes but not well understood in high diversity ecosystems such as coral reefs. Consequently, we tested the potential for diversity-effects with a series of surveys and experiments evaluating the influence of browsing herbivores on macroalgae in Kenya’s fringing reef ecosystem. We surveyed sites and undertook experiments in reefs subject to three levels of human fishing influence: open access fished reefs, small and recently established community-managed marine reserves, and larger, older government-managed marine reserves. Older marine reserves had a greater overall diversity of herbivores and browsers but this was not clearly associated with reduced macroalgal diversity or abundance. Experiments studying succession on hard substrata also found no effects of consumer diversity. Instead, overall browser abundance of either sea urchins or fishes was correlated with declines in macroalgal cover. An exception was that the absence of a key fish browser genus, Naso, which was correlated with the persistence of Sargassum in a marine reserve. Algal selectivity assays showed that macroalgae were consumed at variable rates, a product of strong species-specific feeding and low overlap in the selectivity of browsing fishes. We conclude that the effects of browser and herbivore diversity are less than the influences of key species, whose impacts emerge in different contexts that are influenced by fisheries management. Consequently, identifying key herbivore species and managing to protect them may assist protecting reef functions.  相似文献   

13.
Mark E. Hay 《Oecologia》1984,64(3):396-407
Summary Between-habitat differences in macrophyte consumption by herbivorous fishes were examined on three Caribbean and two Indian Ocean coral reefs. Transplanted sections of seagrasses were used as a bioassay to compare removal rates in reef-slope, reef-flat, sand-plain, and lagoon habitats. Herbivore susceptibility of fifty-two species of seaweeds from these habitats was also measured in the field. Seagrass consumption on shallow reef slopes was always significantly greater than on shallow reef flats, deep sand plains, or sandy lagoons. Reef-slope seaweeds were consistently resistant to herbivory while reef-flat seaweeds were consistently very susceptible to herbivory. This pattern supports the hypothesis that defenses against herbivores are costly in terms of fitness and are selected against in habitats with predictably low rates of herbivory.Sand-plain and lagoon seaweeds showed a mixed response when placed in habitats with high herbivore pressure; most fleshy red seaweeds were eaten rapidly, most fleshy green seaweeds were eaten at intermediate rates, and most calcified green seaweeds were avoided or eaten at very low rates. Differences in susceptibility between red and green seaweeds from sand-plain or lagoon habitats may result from differential competitive pressures experienced by these seaweed groups or from the differential probability of being encountered by herbivores. The susceptibility of a species to removal by herbivorous fishes was relatively consistent between reefs. Preferences of the sea urchin Diadema antillarum were also similar to those of the fish guilds.Unique secondary metabolites were characteristic of almost all of the most herbivore resistant seaweeds. However, some of the herbivore susceptible species also contain chemicals that have been proposed as defensive compounds. Genera such as Sargassum, Turbinaria, Thalassia, Halodule, and Thalassodendron, which produce polyphenolics or phenolic acids, were consumed at high to intermediate rates, suggesting that these compounds are not effective deterrents for some herbivorous fishes. Additionally, potential for the production of the compounds caulerpin, caulerpicin and caulerpenyne in various species of Caulerpa did not assure low susceptibility to herbivory.Heavily calcified seaweeds were very resistant to herbivory, but all of these species also produce toxic secondary metabolites which makes it difficult to distinguish between the effects of morphological and chemical defenses. Predictions of susceptibility to herbivory based on algal toughness and external morphology were of limited value in explaining differing resistances to herbivory.  相似文献   

14.

Knowledge on the early life history, ecology, and biology of marine species is crucial for future projections of the resilience of coral reef ecosystems and for adequate management strategies. A fundamental component of population dynamics is the recruitment of new individuals, and in some marine populations, this may be a limiting factor. Recruitment peaks of coral reef fishes commonly occur during the warmer months of the year in many subtropical and temperate locations worldwide. In the Red Sea, very little is known about the influence of temperature on reproductive patterns of coral reef fishes and studies on recruitment are missing. The Red Sea is one of the hottest and most isolated tropical seas in the world. We hypothesized that sea surface temperatures (SSTs) during the Red Sea’s hottest season may exceed the optimum for successful recruitment of some coral reef fishes, which therefore has to occur during other, cooler seasons, unlike recruitment among coral reef ecosystems around the world. We identified taxa among fish recruits by matching mitochondrial DNA sequences (using COI, commonly known as “barcoding”) and assessed potential biological and environmental drivers of recruitment. We studied three reefs located along a cross-shelf gradient for 12 consecutive months in the central Red Sea to capture seasonal changes in biotic and abiotic parameters along this gradient. Our results indicated that recruitment peaks did not occur during the hottest SSTs for most taxa, especially at the hottest inshore and mid-shelf reefs, and identified fish recruitment to be mainly and strongly correlated with the biomass of planktonic invertebrates. Moreover, temporal patterns of fish recruitment differed within and among taxonomic families among the reefs.

  相似文献   

15.
Despite high diversity and abundance of nominally herbivorous fishes on coral reefs, recent studies indicate that only a small subset of taxa are capable of removing dominant macroalgae once these become established. This limited functional redundancy highlights the potential vulnerability of coral reefs to disturbance and stresses the need to assess the functional role of individual species of herbivores. However, our knowledge of species-specific patterns in macroalgal consumption is limited geographically, and there is a need to determine the extent to which patterns observed in specific reefs can be generalised at larger spatial scales. In this study, video cameras were used to quantify rates of macroalgae consumption by fishes in two coral reefs located at a similar latitude in opposite sides of Australia: the Keppel Islands in the Great Barrier Reef (eastern coast) and Ningaloo Reef (western coast). The community of nominally herbivorous fish was also characterised in both systems to determine whether potential differences in the species observed feeding on macroalgae were related to spatial dissimilarities in herbivore community composition. The total number of species observed biting on the dominant brown alga Sargassum myriocystum differed dramatically among the two systems, with 23 species feeding in Ningaloo, compared with just 8 in the Keppel Islands. Strong differences were also found in the species composition and total biomass of nominally herbivorous fish, which was an order of magnitude higher in Ningaloo. However, despite such marked differences in the diversity, biomass, and community composition of resident herbivorous fishes, Sargassum consumption was dominated by only four species in both systems, with Naso unicornis and Kyphosus vaigiensis consistently emerging as dominant feeders of macroalgae.  相似文献   

16.
Parts of coral reefs from New Caledonia (South Pacific) were registered at the UNESCO World Heritage list in 2008. Management strategies aiming at preserving the exceptional ecological value of these reefs in the context of climate change are currently being considered. This study evaluates the appropriateness of an exclusive fishing ban of herbivorous fish as a strategy to enhance coral reef resilience to hurricanes and bleaching in the UNESCO-registered areas of New Caledonia. A two-phase approach was developed: 1) coral, macroalgal, and herbivorous fish communities were examined in four biotopes from 14 reefs submitted to different fishing pressures in New Caledonia, and 2) results from these analyses were challenged in the context of a global synthesis of the relationship between herbivorous fish protection, coral recovery and relative macroalgal development after hurricanes and bleaching. Analyses of New Caledonia data indicated that 1) current fishing pressure only slightly affected herbivorous fish communities in the country, and 2) coral and macroalgal covers remained unrelated, and macroalgal cover was not related to the biomass, density or diversity of macroalgae feeders, whatever the biotope or level of fishing pressure considered. At a global scale, we found no relationship between reef protection status, coral recovery and relative macroalgal development after major climatic events. These results suggest that an exclusive protection of herbivorous fish in New Caledonia is unlikely to improve coral reef resilience to large-scale climatic disturbances, especially in the lightly fished UNESCO-registered areas. More efforts towards the survey and regulation of major chronic stress factors such as mining are rather recommended. In the most heavily fished areas of the country, carnivorous fish and large targeted herbivores may however be monitored as part of a precautionary approach.  相似文献   

17.
A clear human footprint in the coral reefs of the Caribbean   总被引:5,自引:0,他引:5  
The recent degradation of coral reefs worldwide is increasingly well documented, yet the underlying causes remain debated. In this study, we used a large-scale database on the status of coral reef communities in the Caribbean and analysed it in combination with a comprehensive set of socioeconomic and environmental databases to decouple confounding factors and identify the drivers of change in coral reef communities. Our results indicated that human activities related to agricultural land use, coastal development, overfishing and climate change had created independent and overwhelming responses in fishes, corals and macroalgae. While the effective implementation of marine protected areas (MPAs) increased the biomass of fish populations, coral reef builders and macroalgae followed patterns of change independent of MPAs. However, we also found significant ecological links among all these groups of organisms suggesting that the long-term stability of coral reefs as a whole requires a holistic and regional approach to the control of human-related stressors in addition to the improvement and establishment of new MPAs.  相似文献   

18.
 Degradation of coral reefs often involves a “phase shift” from abundant coral to abundant macroalgae. This paper critically reviews the roles of nutrient increases in such phase shifts. I conclude that nutrient overloads can contribute to reef degradation, but that they are unlikely to lead to phase shifts simply by enhancing algal growth rates and hence allowing overgrowth of corals, unless herbivory is unusually or artificially low. Concentrations of dissolved inorganic nutrients are poor indicators of reef status, and the concept of a simple threshold concentration that indicates eutrophication has little validity. I discuss the significance and consequences of these assessments for reef management, focusing on the Great Barrier Reef, and conclude with some specific recommendations, including protection of herbivorous fishes, minimisation of terrestrial runoff, and protection of coastal reefs. Accepted: 13 August 1999  相似文献   

19.
Understanding large-scale movement of ecologically important taxa is key to both species and ecosystem management. Those species responsible for maintaining functional connectivity between habitats are often called mobile links and are regarded as essential elements of resilience. By providing connectivity, they support resilience across spatial scales. Most marine organisms, including fishes, have long-term, biogeographic-scale connectivity through larval movement. Although most reef species are highly site attached after larval settlement, some taxa may also be able to provide rapid, reef-scale connectivity as adults. On coral reefs, the identity of such taxa and the extent of their mobility are not yet known. We use acoustic telemetry to monitor the movements of Kyphosus vaigiensis, one of the few reef fishes that feeds on adult brown macroalgae. Unlike other benthic herbivorous fish species, it also exhibits large-scale (>2 km) movements. Individual K. vaigiensis cover, on average, a 2.5 km length of reef (11 km maximum) each day. These large-scale movements suggest that this species may act as a mobile link, providing functional connectivity, should the need arise, and helping to support functional processes across habitats and spatial scales. An analysis of published studies of home ranges in reef fishes found a consistent relationship between home range size and body length. K. vaigiensis is the sole herbivore to depart significantly from the expected home range–body size relationship, with home range sizes more comparable to exceptionally mobile large pelagic predators rather than other reef herbivores. While the large-scale movements of K. vaigiensis reveal its potential capacity to enhance resilience over large areas, it also emphasizes the potential limitations of small marine reserves to protect some herbivore populations.  相似文献   

20.
Speciation in coral-reef fishes   总被引:2,自引:0,他引:2  
Covering <0·1% of the ocean’s surface, coral reefs harbour about one‐third of all marine fishes or c. 5000 species. Allopatry (geographic isolation) is believed to be the primary mode of speciation, yet few biogeographic barriers exist between reefs, and most reef fishes have a pelagic larval stage capable of extensive dispersal. Under these circumstances, why are there so many species of reef fishes? Since most biogeographic barriers in the oceans are either spatially or temporally permeable on a relatively short time frame, the requirement of isolation during allopatric speciation is hard to satisfy. Evidence from empirical and theoretical studies, the biological characteristics of coral reefs, and a reanalysis of biogeographic barriers indicate that sympatric speciation is possible but not common at small spatial scales and that parapatric speciation is a common (and probably the prevalent) mode of diversification in coral‐reef fishes. Regardless of the speciation mode, previous hypotheses of accelerated diversification in the Pleistocene due to sea level fluctuations are not supported by phylogenetic analyses. Recent developments in the area of comparative genomics can fuel a new revolution in the way marine speciation is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号