首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Septins are highly conserved GTP-binding proteins involved in numerous cellular processes. Despite a growing awareness of their roles in the cell biology, development and signal transmission in nervous systems, comparably little is known about precise septin expression. Here, we use the well-established model organism zebrafish (Danio rerio) to unravel the expression of sept8a and sept8b, with special focus on the CNS. We performed whole mount RNA in situ hybridization on zebrafish 1–4 dpf in combination with serial sectioning of epon-embedded samples as well as on brain sections of adult zebrafish to obtain precise histological mapping of gene expression. Our results show a common expression of both genes at embryonic stages, whereas sept8a is mainly restricted to the gill arches and sept8b to specific brain structures at later stages. Brains of adult zebrafish reveal a large spatial overlap of sept8a and sept8b expression with few regions uniquely expressing sept8a or sept8b. Our results indicate a neuronal expression of both genes, and additionally suggest expression of sept8b in glial cells. Altogether, this study provides a first detailed insight into the expression of sept8a and sept8b in zebrafish and contributes to a more comprehensive understanding of septin biology in vertebrate model systems.  相似文献   

2.
Chitinases and chitinase like proteins play an important role in mammalian immunity and functions in early zebrafish development have been suggested. Here we report identification of six zebrafish chitinases and chitinase like proteins (called CHIA.1–6) belonging to the glycoside hydrolase family 18, and determine their spatial and temporal expression at 10 stages of zebrafish development.CHIA.4 is highly maternally expressed and it is expressed 100 fold above any other CHIA gene at zygote through to blastula stage. Later, after the maternal to zygotic transition, CHIA.4 expression decreases to the same level as CHIA.5 and CHIA.6. Subsequently, CHIA.1, CHIA.2, CHIA.3 and CHIA.4, CHIA.5, CHIA.6 each follow distinct paths in terms of expression levels.Until 4 days post fertilization the spatial expression patterns of all six CHIA genes overlap extensively, with expression detected predominantly in vascular, ocular and intestinal tissues. At 5 days post fertilization CHIA.1, CHIA.2 and CHIA.3 are expressed almost exclusively in the stomach, whereas CHIA.4, CHIA.5 and CHIA.6 are also prominently expressed in the liver. These different expression patterns may contribute to the establishment of a basis on which functional analysis in older larvae may be founded.  相似文献   

3.
The zebrafish, (Danio rerio) is an important model organism for the analysis of molecular mechanisms that govern neuronal circuit development. The neuronal circuitry that mediates olfaction is crucial for the development and survival of all teleost fishes. In concert with other sensory systems, olfaction is functional at early stages in zebrafish development and mediates important behavioral and survival strategies in the developing larva. Odorant cues are transduced by an array of signaling molecules from receptors in olfactory sensory neurons. The scaffolding protein family known as Homer is well placed to orchestrate this signaling cascade by interacting with and coupling membrane bound receptors to cytosolic signaling partners. To date, Homer has not been demonstrated in the zebrafish. Here we report that the Homer 1b/c isoform was prominent in the olfactory system from the earliest stages of differentiation. We describe the spatial and temporal distribution of Homer in the zebrafish olfactory system. At 24 hours post fertilization (hpf), Homer expression delineated the boundary of the presumptive olfactory placode. Subsequent expression steadily increased throughout the developing olfactory placode, with a prominent localization to the dendritic knobs of the olfactory sensory neurons. Homer expression in the developing olfactory bulb was punctate and prominent in the glomeruli, displaying an apparent synaptic localization. This work supports the hypothesis that Homer is an important molecule in neuronal circuit development, necessary for crucial behaviors required for development and survival.  相似文献   

4.
SGO1 has been characterized in its function in correct cell division and its role in centrosome cohesion in the nucleus. However, its organ-specific maturation-related expression pattern in vivo remains largely uncharacterized. Here, we show clear SGO1 expression in post-developmental neuronal cells and cytoplasmic localisation in nucleated cells with a transgenic mice model and immunohistochemistry of wild type mice. We demonstrate extranuclear expression of Sgo1 in the developing heart and gut, which have been shown to be dysregulated in humans with homozygous SGO1 mutation. Additionally, we show Sgo1 expression in select population of retinal cells in developing and post-developmental retina. Our expression analysis strongly suggests that the function of SGO1 goes beyond its well characterized role in cell division.  相似文献   

5.
6.
In the central nervous system (CNS), giving rise to the diversity and the complexity of neurons is the spatial and temporal differentiation of neural stem cells and/or neural precursors. Here, we investigated the role of Jagged-mediated Notch signaling in the maintenance and differentiation of progenitor cells during late neurogenesis by analyzing the expression patterns of zebrafish jagged homologues, and by injecting their morpholinos. Expression of both jagged2 and jagged1b mRNA in the CNS suggested that they might be involved in control of differentiating neural progenitors in which they are involved later in development. In Jagged2 and Jagged1b knock-down embryos, the overall rate of cell division dramatically decreased, and the ectopic VeMe neurons were generated. The results suggest that Jagged-Notch signaling plays a critical role in the maintenance of proliferating neural precursors, and that the generation of late-born neurons, especially VeMe neurons, is regulated by the interplay between Jagged2 and Jagged1b.  相似文献   

7.
8.
Purinergic Signalling - Adenosine is an endogenous nucleoside in the central nervous system that acts on adenosine receptors. These are G protein-coupled receptors that have four known subtypes:...  相似文献   

9.
In recent years, Disrupted-In-Schizophrenia 1 (DISC1) has emerged as one of the most promising candidate genes whose disruption confers an increased risk for schizophrenia. Cell biology studies have implicated DISC1 in key neurodevelopmental processes including neurite outgrowth and neuronal migration. In situ hybridization analysis has revealed that Disc1 is expressed in the hypothalamus, olfactory bulbs, the developing cerebral cortex and the hippocampus. The hippocampus is of particular interest because abnormalities in hippocampal volume and function have been consistently reported in schizophrenics. Moreover, DISC1 mutations have been associated with abnormal activation of the hippocampus in humans. Given the involvement of the hippocampus in the pathophysiology of schizophrenia, there is an intriguing possibility that disruption of DISC1 may increase schizophrenia susceptibility by altering the normal development and function of the hippocampus. In order to contribute to our understanding of DISC1's role in the hippocampus, we have performed a detailed analysis of the Disc1 expression pattern in the mouse hippocampus throughout development. We report that Disc1 is expressed throughout the hippocampus during embryonic development, with expression becoming increasingly specialized in Ammon's horn and dentate gyrus granule cells within the first postnatal week. This expression pattern remains consistent into adulthood, with a noted decrease in Disc1 expression in the adult CA1. Disc1 is also expressed in proliferating cells in the adult subgranular zone, as well as in a subset of GABAergic interneurons. Our results are the first report of a detailed immunohistochemical analysis of the ontogeny of Disc1 expression within the hippocampus.  相似文献   

10.
Cadherins are cell adhesion molecules that have been implicated in development of a variety of organs including the ear. In this study we analyzed expression patterns of three zebrafish cadherins (Cadherin-2, -4, and -11) in the embryonic and larval zebrafish inner ear using both in situ hybridization and immunocytochemical methods. All three Cadherins exhibit distinct spatiotemporal patterns of expression during otic vesicle morphogenesis. Cadherin-2 and Cadherin-4 proteins and their respective mRNAs were detected mainly in the sensory patches and the statoacoustic ganglion (SAg), respectively. In contrast, cadherin-11mRNA was widely expressed earlier in the otic placode, and later became restricted to a subset of cells in the inner ear, including hair cells.  相似文献   

11.
12.
13.
14.
15.

Background  

Expression of transgenes in muscle by injection of naked DNA is widely practiced. Application of electrical pulses at the site of injection was demonstrated to improve transgene expression in muscle tissue. Zebrafish is a precious model to investigate developmental biology in vertebrates. In this study we investigated the effect of electroporation on expression of transgenes in 3–6 month old adult zebrafish.  相似文献   

16.
Non-visual opsins mediate various light-dependent physiological events. Our previous search for non-visual opsin genes in zebrafish led to the discovery of VAL-opsin (VAL-opsinA) in deep brain cells and retinal horizontal cells of the adult fish. In this study, we report the identification and characterization of its duplicated gene, VAL-opsinB, in zebrafish. A molecular phylogenetic analysis indicates that VAL-opsinB is orthologous to a previously reported salmon gene and that the duplication of the VAL-opsin gene occurred in the teleost lineage. The recombinant protein of zebrafish VAL-opsinB forms a green-sensitive photopigment when reconstituted with 11- cis -retinal. VAL-opsinB expression was detected in a limited number of cells of the brain and the eye, and the expression pattern is distinct from that of the VAL-opsinA gene. Such a differential expression pattern suggests that VAL-opsinA and VAL-opsinB are involved in different physiological events in zebrafish.  相似文献   

17.
18.
Synaptophysin and syntaxin-1 are membrane proteins that associate with synaptic vesicles and presynaptic active zones at nerve endings, respectively. The former is known to be a good marker of synaptogenesis; this aspect, however, is not clear with syntaxin-1. In this study, the expression of both proteins was examined in the developing human retina and compared with their distribution in postnatal to adult retinas, by immunohistochemistry. In the inner plexiform layer, both were expressed simultaneously at 11–12 weeks of gestation, when synaptogenesis reportedly begins in the central retina. In the outer plexiform layer, however, the immunoreactivities were prominent by 16 weeks of gestation. Their expression in both plexiform layers followed a centre-to-periphery gradient. The immunoreactivities for both proteins were found in the immature photoreceptor, amacrine and ganglion cells; however, synaptophysin was differentially localized in bipolar cells and their axons, and syntaxin was present in some horizontal cells. In postnatal-to-adult retinas, synaptophysin immunoreactivity was prominent in photoreceptor terminals lying in the outer plexiform layer; on the contrary, syntaxin-1 was present in a thin immunoreactive band in this layer. In the inner plexiform layer, however, both were homogeneously distributed. Our study suggests that (i) syntaxin-1 appears in parallel with synapse formation; (ii) synaptogenesis in the human retina might follow a centre-to-periphery gradient; (iii) syntaxin-1 is likely to be absent from ribbon synapses of the outer plexiform layer, but may occur at presynaptic terminals of photoreceptor and horizontal cells, as is apparent from its localization in these cells, which is hitherto unreported for any vertebrate retina.  相似文献   

19.
The A2A adenosine receptor (AdR) subtype has emerged as an attractive target in the pursuit of improved therapy for Parkinson’s disease (PD). This report focuses on characterization of zebrafish a2 AdRs. By mining the zebrafish EST and genomic sequence databases, we identified two zebrafish a2a (adora2a.1 and adora2a.2) genes and one a2b (adora2b) AdR gene. Sequence comparisons indicate that the predicted zebrafish A2 AdR polypeptides share 62–74% amino acid identity to mammalian A2 AdRs. We mapped the adora2a.1 gene to chromosome 8, the adora2a.2 gene to chromosome 21, and the adora2b gene to chromosome 5. Whole mount in situ hybridization analysis indicates zebrafish a2 AdR genes are expressed primarily within the central nervous system (CNS). Zebrafish are known to be sensitive to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that causes selective loss of dopaminergic neurons and PD-like symptoms in humans as well as in animal models. Here we show that caffeine, an A2A AdR antagonist, is neuroprotective against the adverse effects of MPTP in zebrafish embryos. These results suggest that zebrafish AdRs may serve as useful targets for testing novel therapeutic strategies for the treatment of PD.  相似文献   

20.
Calretinin is a calcium-binding protein which participates in a variety of functions including calcium buffering and neuronal protection. It also serves as a developmental marker of retinal ganglion cells (RGCs). In order to study the role of calretinin in the development and regeneration of RGCs, we have studied its pattern of expression in the retina at different developmental stages, as well as during optic nerve regeneration by means of immunohistochemistry. During development, calretinin is found for the first time in RGCs when they connect with the optic tectum. Optic nerves from adult zebrafish were crushed and after different survival times, calretinin expression in the retina, optic nerve tract and optic tectum was studied. From the day of crushing to 10 days later, calretinin expression was found to be downregulated within RGCs and their axons, as was also observed during the early developmental stages of RGCs, when they are not committed to a definite cell phenotype. Moreover, 13 days after lesion, when the regenerating axons arrived at the optic tectum, a recovery of calretinin immunoreactivity within the RGCs was observed. These results indicate that calretinin may play an important role during optic nerve regeneration, Thus, the down-regulation of Calretinin during the growth of the RGC axons towards the target during development as well as during their regeneration after injury, indicates that an increase the availability of cytosolic calcium is integral to axon outgrowth thus recapitulating the pattern observed during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号