首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genetic background affects polyp development in the Multiple intestinal neoplasia (Apc(Min)) mouse model. The Modifier of Min 1 (Mom1) locus accounts for approximately 50% of the variation in polyp multiplicity. We generated reciprocal congenic lines, such that the recipient C57BL/6J (B6) strain carries a donor C3H/HeJ (C3H) Mom1 allele, and the recipient C3H strain carries a donor B6 Mom1 allele. Hybrid progeny from congenic females mated to B6 Apc(Min/+) males were analyzed. A single C3H Mom1 locus on the B6 background reduced small intestinal polyp numbers by 50% and colon polyp incidence by 66% compared to their susceptible B6 Mom1(S/S)Apc(Min/+) siblings. These findings show that the C3H genome contains a resistant Mom1(R) locus. The reciprocal congenic line, which carries the susceptible B6 Mom1(S) locus on the C3H background, reduced small intestinal polyp numbers by 80% and colon polyp incidence by 95% compared to B6 Mom1(S/S)Apc(Min/+) mice. These data demonstrate that unidentified modifiers in the C3H strain can suppress intestinal polyp multiplicity in Apc(Min/+) mice, and act in the absence of a resistant Mom1(R) locus.  相似文献   

2.
The c-myc oncogene plays an important role in tumorigenesis and is frequently deregulated in many human cancers, including gastrointestinal cancers. In humans, mutations of the adenomatous polyposis coli (Apc) tumor suppressor gene occur in most colorectal cancers. Mutation of Apc leads to stabilization of beta-catenin and increases in beta-catenin target gene expression (c-myc and cyclin D1), whose precise functional significance has not been examined using genetic approaches. Apc(Min/+) mice are a model of familial adenomatous polyposis and are heterozygous for an Apc truncation mutation. We have developed a model for examining the role of c-Myc in Apc-mediated tumorigenesis. We crossed c-myc(+/-) mice to Apc(Min/+) to generate Apc(Min/+) c-myc(+/-) animals. The compound Apc(Min/+) c-myc(+/-) mice were used to evaluate the effect of c-myc haploinsufficiency on the Apc(Min/+) phenotype. We observed a significant reduction in tumor numbers in the small intestine of Apc(Min/+) c-myc(+/-) mice compared with control Apc(Min/+) c-myc(+/+) mice. In addition, we observed one to three polyps per colon in Apc(Min/+) c-myc(+/+) mice, whereas only two lesions were observed in the colons of Apc(Min/+) mice that were haploinsufficient for c-myc. Moreover, reduction in c-myc levels resulted in a significant increase in the survival of these animals. Finally, we observed marked decreases in vascular endothelial growth factor, EphA2, and ephrin-B2 expression as well as marked decreases in angiogenesis in intestinal polyps in Apc(Min/+) c-myc(+/-) mice. This study shows that c-Myc is critical for Apc-dependent intestinal tumorigenesis in mice and provides a potential therapeutic target in the treatment of colorectal cancer.  相似文献   

3.
The C57BL/6J-Min/+ (Min/+) mouse bears a mutant Apc gene and therefore is an important in vivo model of intestinal tumorigenesis. Min/+ mice develop adenomas that exhibit loss of the wild-type Apc allele (Apc(Min/-)). Previously, we found that histologically normal enterocytes bearing a truncated Apc protein (Apc(Min/+)) migrated more slowly in vivo than enterocytes with either wild-type Apc (Apc(+/+)) or with heterozygous loss of Apc protein (Apc(1638N)). To study this phenotype further, we determined the effect of the Apc(Min) mutation upon cell-cell adhesion by examining the components of the adherens junction (AJ). We observed a reduced association between E-cadherin and beta-catenin in Apc(Min/+) enterocytes. Subcellular fractionation of proteins from Apc(+/+), Apc(Min/+), and Apc(Min/-) intestinal tissues revealed a cytoplasmic localization of intact E-cadherin only in Apc(Min/+), suggesting E-cadherin internalization in these enterocytes. beta-Catenin tyrosine phosphorylation was also increased in Apc(Min/+) enterocytes, consistent with its dissociation from E-cadherin. Furthermore, Apc(Min/+) enterocytes showed a decreased association between beta-catenin and receptor protein-tyrosine phosphatase beta/zeta (RPTPbeta/zeta), and Apc(Min/-) cells demonstrated an association between beta-catenin and receptor protein-tyrosine phosphatase gamma. In contrast to the Apc(Min/+) enterocytes, Apc(Min/-) adenomas displayed increased expression and association of E-cadherin, beta-catenin, and alpha-catenin relative to Apc(+/+) controls. These data show that Apc plays a role in regulating adherens junction structure and function in the intestine. In addition, discovery of these effects in initiated but histologically normal tissue (Apc(Min/+)) defines a pre-adenoma stage of tumorigenesis in the intestinal mucosa.  相似文献   

4.
The Apc(Min/+) mouse has a mutation in the Apc tumor suppressor gene and develops intestinal polyps, beginning at 4 wk of age. This mouse develops cachexia by 6 mo, characterized by significant loss of muscle and fat tissue. The purpose of the present study was to determine the role of circulating interleukin-6 (IL-6) and the polyp burden for the development of cachexia in Apc(Min/+) mice. At 26 wk of age, mice exhibiting severe cachectic symptoms had a 61% decrease in gastrocnemius muscle weight, complete loss of epididymal fat, a 10-fold increase in circulating IL-6 levels, and an 89% increase in intestinal polyps compared with mildly cachectic animals. Apc(Min/+)/IL-6(-/-) mice did not lose gastrocnemius muscle mass or epididymal fat pad mass while overall polyp number decreased by 32% compared with Apc(Min/+) mice. Plasmid-based IL-6 overexpression in Apc(Min/+)/IL-6(-/-) mice led to a decrease in gastrocnemius muscle mass and epididymal fat pad mass and increased intestinal polyp burden. IL-6 overexpression did not induce cachexia in non-tumor-bearing mice. These data demonstrate that IL-6 is necessary for the onset of adipose and skeletal muscle wasting in the Apc(Min/+) mouse and that circulating IL-6 can regulate Apc(Min/+) mouse tumor burden.  相似文献   

5.
Many epidemiological studies have demonstrated that level of exercise is associated with reduced colorectal cancer risk. Treadmill training can decrease Apc(Min/+) mouse intestinal polyp number and size, but the mechanisms remain unclear. Understanding the molecular changes in the tumor following exercise training may provide insight on the mechanism by which exercise decreases Apc(Min/+) mouse polyp formation and growth. The purpose of this study was to determine if exercise can modulate Apc(Min/+) mouse intestinal polyp cellular signaling related to tumor formation and growth. Male Apc(Min/+) mice were randomly assigned to control (n = 20) or exercise (n = 20) treatment groups. Exercised mice ran on a treadmill at a moderate intensity (18 m/min, 60 min, 6 days/wk, 5% grade) for 9 wk. Polyps from Apc(Min/+) mice were used to quantify markers of polyp inflammation, apoptosis, and beta-catenin signaling. Exercise decreased the number of macrophages in polyps by 35%. Related to apoptosis, exercise decreased the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells by 73% in all polyps. Bax protein expression in polyps was decreased 43% by exercise. beta-Catenin phosphorylation was elevated 3.3-fold in polyps from exercised mice. Moderate-intensity exercise training alters cellular pathways in Apc(Min/+) mouse polyps, and these changes may be related to the exercise-induced reduction in polyp formation and growth.  相似文献   

6.
Min基因突变小鼠模型在肠道肿瘤研究中的应用   总被引:3,自引:0,他引:3  
盛弘强  陈俭  来茂德 《遗传》2008,30(3):277-282
迄今为止, 肠道肿瘤相关的基因突变小鼠或敲除小鼠大约有30多种, Min(multiple intestinal neoplasia)小鼠是具有肠道多发性腺瘤特征的Apc基因突变小鼠, 被认为是当前较为理想的家族性腺瘤性息肉病(FAP)的研究模型。APC基因是Wnt途径中重要的抑癌基因, 该途径不仅是动物胚胎发育过程中关键的信号转导途径, 也对结直肠肿瘤的发生发展起到不同寻常的作用。对Min小鼠模型历史、分子遗传学与表型特征、肠道肿瘤与Wnt途径异常、抑癌基因甲基化、TGF-b途径和多药耐药基因等内容进行了介绍, 并分析了该小鼠模型在抗结直肠肿瘤药物研究中的应用和意义。  相似文献   

7.
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is one of the mutagenic heterocyclic amines derived from cooked meat. In previous animal studies, spontaneous tumour formation in B6(Min/+) mice was associated with somatic loss of the wild-type Apc+ allele by loss of the entire chromosome 18 or by recombination. The objective of this study was to examine genetic changes caused by PhIP-exposure in a mouse intestinal cell line and in tumours from hybrid mice by keeping track of the chromosomes carrying the two Apc alleles. We transformed the SV40 T-immortalised intestinal epithelial cell line IMCE, derived from the B6(Min/+) mice by exposure to N-OH-PhIP, and studied the effect on Apc status and chromosome 18. Eighteen transformed cultures were obtained and all of them had retained the Apc+ allele. Five of seven transformed cultures were tumorigenic after implantation in nude mice. Chromosomal analysis of these five cultures and the parent IMCE cell line showed that the IMCE cells were near-tetraploid with an average of 77 chromosomes/cell, while the tumorigenic cell cultures were all triploid to hyper-triploid with a range of 61-69 chromosomes/cell. The number of copies of chromosome 18 was about four in the IMCE line and this copy number was retained in the transformed lines derived from IMCE. Changes in chromosome 18 and Apc during tumour development in vivo were examined in spontaneously formed and PhIP-induced intestinal tumours from two hybrid mice strains, i.e. B6(Min/+) - a murine FAP model - crossed with either AKR/J or A/J. We evaluated the allelic status of Apc, and the heterogenic microsatellite markers D18Mit19 and D18Mit4, located at the upper and lower ends of chromosome 18, respectively. In tumours from untreated animals, instability in the D18Mit19 and Apc was observed. Upon PhIP exposure, the B6(Min/A+) hybrid mouse tumours differed distinctly in genetic profile from those obtained from untreated animals and we detected three genetically different tumour groups, all of which had apparently retained Apc+. One group had allelic balance between the Apc(Min) and Apc+, the second had allelic imbalance between the Apc and D18Mit4 alleles, indicative of chromosomal stability in the first group and instability in the lower end of chromosome 18 in the second group, respectively. The third group showed variable allelic status of the three markers. A similar change in genetic profile was also seen in intestinal tumours of PhIP-exposed B6(Min/AKR+) hybrid mice, but it was less pronounced. Chromosomal breaks and/or recombinational events could be alternative explanations for the observed allelic imbalances in chromosome 18 markers in intestinal tumours from PhIP-exposed mice.  相似文献   

8.
The Adenomatous Polyposis Coli (APC) tumor suppressor gene is silenced by hypermethylation or mutated in up to 70% of human breast cancers. In mouse models, Apc mutation disrupts normal mammary development and predisposes to mammary tumor formation; however, the cooperation between APC and other mutations in breast tumorigenesis has not been studied. To test the hypothesis that loss of one copy of APC promotes oncogene-mediated mammary tumorigenesis, Apc(Min/+) mice were crossed with the mouse mammary tumor virus (MMTV)-Polyoma virus middle T antigen (PyMT) or MMTV-c-Neu transgenic mice. In the PyMT tumor model, the Apc(Min/+) mutation significantly decreased survival and tumor latency, promoted a squamous adenocarcinoma phenotype, and enhanced tumor cell proliferation. In tumor-derived cell lines, the proliferative advantage was a result of increased FAK, Src and JNK signaling. These effects were specific to the PyMT model, as no changes were observed in MMTV-c-Neu mice carrying the Apc(Min/+) mutation. Our data indicate that heterozygosity of Apc enhances tumor development in an oncogene-specific manner, providing evidence that APC-dependent pathways may be valuable therapeutic targets in breast cancer. Moreover, these preclinical model systems offer a platform for dissection of the molecular mechanisms by which APC mutation enhances breast carcinogenesis, such as altered FAK/Src/JNK signaling.  相似文献   

9.
Epidemiologic and animal studies indicate that sustained use of non-steroidal anti-inflammatory drugs (NSAIDs) have a chemopreventive effect against the incidence of colorectal neoplasia and subsequent mortality. We previously demonstrated that sulindac significantly reduces intestinal tumor load in Apc(Min/+)mice and the tumor regression was not necessarily correlated with prostaglandin biosynthesis. In the present study, we further investigate the relationship of NSAID treatment and tumorigenesis in the Apc(Min/+)mouse model. We demonstrate that indomethacin (9 ppm) is a very potent chemopreventive agent, reducing tumor load by 85% and significantly inhibiting basal and ex vivo prostaglandin formation (P< 0.006 and P< 0.0001, respectively). Aspirin (400 ppm) has a similar impact on reducing prostaglandin levels, but in contrast to indomethacin, is uneffective in reducing the tumor load. The data indicate a discordance between the impact of different NSAIDs on tumorigenesis in Apc(Min/+)mice.  相似文献   

10.
Epidemiological studies indicate that adequate dietary folate is protective against colon cancer, although mechanisms remain largely elusive. We investigated the effects of genetic disruptions of folate transport and metabolism and of dietary folate deficiency in a mouse model of colon cancer, the Apc(min/+) mouse. Apc(min/+) mice with heterozygous knockout of the gene for reduced folate carrier 1 (Rfc1(+/-)) developed significantly fewer adenomas compared to Rfc1(+/+)Apc(min/+) mice [30.3+/-4.6 vs. 60.4+/-9.4 on a control diet (CD) and 42.6+/-4.4 vs. 55.8+/-7.6 on a folate-deficient diet, respectively]. Rfc1(+/-)Apc(min/+) mice also carried a lower tumor load, an indicator of tumor size as well as of tumor number. In contrast, there were no differences in adenoma formation between Apc(min/+) mice carrying a knockout allele for methionine synthase (Mtr(+/-)), an enzyme that catalyzes folate-dependent homocysteine remethylation, and Mtr(+/+)Apc(min/+) mice. However, in both Mtr groups of mice, dietary folate deficiency significantly increased adenoma number (from 32.3+/-3.8 on a CD to 48.1+/-4.2 on a folate-deficient diet), increased plasma homocysteine, decreased global DNA methylation in preneoplastic intestines and increased apoptosis in tissues. There were no genotype-associated differences in these parameters in the Rfc1 group, suggesting that the protection conferred by Rfc1 deficiency is carried out through a different mechanism. In conclusion, genetic and nutritional disturbances in folate metabolism can have distinct influences on tumorigenesis in Apc(min/+) mice; altered levels of homocysteine, global DNA methylation and apoptosis may contribute mechanistically to dietary influence.  相似文献   

11.
IL-17 plays an important role in gut homeostasis. However, the role of IL-17F in intestinal tumorigenesis has not been addressed. Here we demonstrate that ablation of IL-17F significantly inhibits spontaneous intestinal tumorigenesis in the small intestine of Apc(Min/+) mice. IL-17F ablation decreased IL-1β and Cox-2 expression as well as IL-17 receptor C (IL-17RC) expression, which were increased in tumors from Apc(Min/+) mice. Lack of IL-17F did not reverse the splenomegaly but partially restored thymic atrophy, suggesting a local effect of IL-17F in the intestine. IL-17F deficient Apc(Min/+) mice showed a significant decrease in immune cell infiltration in the lamina propria. Interestingly, the expression of IL-17A from CD4 T cells in the lamina propria remains unchanged in the absence of IL-17F. Collectively, our results suggest the proinflammatory and essential role of IL-17F to develop spontaneous intestinal tumorigenesis in Apc(Min/+) mice in the presence of IL-17A.  相似文献   

12.
Cachexia is characterized as an inflammatory state induced by the cancer environment, which is accompanied by the loss of muscle and fat mass. Well-investigated mechanisms of cachexia include the suppression of myofiber protein synthesis and the induction of the protein degradation. However, it is not well characterized whether chronic inflammation during cachexia induces myofiber degeneration, which contributes to muscle mass loss and decreased functional capacity. The purpose of this study was to determine whether Apc(Min/+) mice, which demonstrate a chronic systemic inflammatory state due to an intestinal tumor burden, undergo cachexia and whether the myofibers exhibit signs of degeneration and/or regeneration. Six-month-old female Apc(Min/+) body weight decreased 21% compared with C57BL/6 mice and was not the result of blunted growth. Apc(Min/+) gastrocnemius muscle was reduced 45%, and soleus mean fiber cross-sectional area decreased 24% vs. C57BL/6 mice. Soleus muscle morphology demonstrated pathology of myofibers undergoing degeneration and/or regeneration. These data demonstrate that the Apc(Min/+) mouse becomes cachectic by 6 mo of age and that skeletal muscle degeneration and regeneration may be related to the muscle loss.  相似文献   

13.
Epidemiological studies indicate that sunlight exposure and vitamin D are each associated with a lower risk of colon cancer. The few controlled supplementation trials testing vitamin D in humans reported to date show conflicting results. We have used two genetic models of familial colon cancer, the Apc(Pirc/+) (Pirc) rat and the Apc(Min/+) (Min) mouse, to investigate the effect of 25-hydroxyvitamin D(3) [25(OH)D(3)] and two analogs of vitamin D hormone on colonic tumors. Longitudinal endoscopic monitoring allowed us to test the efficacy of these compounds in preventing newly arising colonic tumors and in affecting established colonic tumors. 25(OH)D(3) and two analogs of vitamin D hormone each failed to reduce tumor multiplicities or alter the growth patterns of colonic tumors in the Pirc rat or the Min mouse.  相似文献   

14.
The Apc(Min/+) (Min) mouse is genetically predisposed to both intestinal and mammary tumorigenesis. We investigated age-related changes in the susceptibility of mice (before, during and after puberty) to radiation-induced mammary tumorigenesis using this model. Female Min and wild-type mice having the C57BL/6J background were irradiated with 2 Gy of X rays at 2, 5, 7 and 10 weeks and killed humanely at 18 weeks of age. Min mice irradiated at 7-10 weeks of age (after puberty) developed mammary tumors with squamous metaplasia, whereas their wild-type littermates did not. Interestingly, irradiation of Min mice at 2-5 weeks (before and during puberty, respectively) did not induce mammary tumors but rather cystic nodules with metaplasia. The mammary tumors exhibited increased nuclear beta-catenin protein and loss of the wild-type Apc allele. Our results show that susceptibility to radiation-induced mammary tumorigenesis increases after puberty in Min mice, suggesting that the tumorigenic effect of ionizing radiation targets the lobular-alveolar progenitor cells, which increase in number with age and are controlled by beta-catenin signaling.  相似文献   

15.
16.
Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+) mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the Apc(Min/+) mouse is not known. Cachexia progression was studied in Apc(Min/+) mice that were either weight stable (WS) or had initial (≤5%), intermediate (6-19%), or extreme (≥20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ~50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process.  相似文献   

17.
Overexpression of the epidermal growth factor receptor (EGFR) and its increased tyrosine kinase activity are implicated in colorectal cancer (CRC) development and malignant progression. The C57BL/6J-Min/+ (Min/+) mouse is a model for CRC and develops numerous intestinal adenomas. We analyzed the normal mucosa of Min/+ and Apc+/+ (WT) littermate mice together with Apc-null adenomas to gain insight into the roles of Egfr in these intestinal tissues. Protein analyses showed that Egfr activity was highest in the tumors, and also up-regulated in Min/+ relative to WT enterocytes. Expression of ubiquitylated Egfr (Egfr-Ub) was increased in Min/+ enterocytes and tumors. Tumors exhibited increased association of Egfr with clathrin heavy chain (CHC), Gab1, and p85alpha, the regulatory subunit of phosphoinositide 3-kinase (PI3K), and tumors also overexpressed c-Src, PDK1, and Akt. Immunohistochemistry for Akt-p-Ser473 revealed a low level of this active kinase in Min/+ and WT enterocytes and its strong presence in tumors. Prostaglandin E2 (PGE2) is a product of cyclooxygenase-2 (Cox-2) activity that is up-regulated in Min/+ tumors and transactivates Egfr. PGE2 expression was significantly higher in untreated Min/+ tumors and reduced by treatment with the Cox-2 inhibitor, celecoxib. Dietary administration of this NSAID also inhibited Egfr activity in tumors. Increased activation of the EGFR-PI3K-Akt signaling pathway in tumors relative to Apc+/+ and ApcMin/+ enterocytes provides potential opportunities for therapeutic interventions to differentially suppress tumor formation, promotion, progression, and/or recurrence.  相似文献   

18.
Moderate-intensity treadmill running can alter male Apc(Min/+) mouse polyp formation. This purpose of this study was to examine whether exercise mode differentially affects Apc(Min/+) mouse intestinal polyp development in male and female mice. Male and female Apc(Min/+) mice were randomly assigned to control, treadmill (18 m/min; 60 min/day; 6 days/wk), or voluntary wheel running (24-h access) groups. Nine weeks of training decreased total intestinal polyps by 29% in male treadmill runners (66 +/- 9; P = 0.038) compared with male controls (93 +/- 7). The number of large polyps (>/=1-mm diameter) were also reduced by 38% in male treadmill runners (49 +/- 6; P = 0.005) compared with male controls (79 +/- 6). Treadmill running in female Apc(Min/+) mice and wheel running in both genders did not affect polyp number or size. Spleen weight decreased in male treadmill runners (91 +/- 9 mg; P = 0.011) and wheel runners (75 +/- 6 mg; P = 0.004) compared with controls (141 +/- 13 mg). Plasma IL-6 was reduced by 96% in male treadmill runners (1.2 +/- 0.6 pg/ml) and 78% in male wheel runners (6.6 +/- 3.3 pg/ml) compared with control mice (27.9 +/- 2.8 pg/ml; P < 0.05). Female mice responded similarly with an 86% decrease in plasma IL-6 with treadmill running (3.2 +/- 1.2 pg/ml) and 90% decrease with wheel running (2.9 +/- 2.0 pg/ml) compared with control mice (21.1 +/- 5.3 pg/ml; P < 0.05). The crypt depth-to-villus height ratio in the intestine, an indirect marker of intestinal inflammation, decreased by 21 (P = 0.024) and 24% (P = 0.029), respectively, in male and female treadmill runners but not wheel runners. Physical activity-induced attenuation of intestinal polyp number and size is dependent on exercise mode and differs between genders. The modulation of systemic and intestinal inflammation may also depend on exercise mode.  相似文献   

19.
We employed two selective EGFR tyrosine kinase inhibitors: AG494 (reversible) and AG1478 (irreversible) for growth regulation of human lung (A549) and prostate (DU145) cancer cell lines, cultured in chemically defined DMEM/F12 medium. Both tested tyrphostins significantly inhibited autocrine growth of the investigated cell lines. The action of AG494 was dose dependent, and at highest concentrations led to complete inhibition of growth. AG1478 seemed to be more effective at lower concentrations, but was unable to completely inhibit growth of A549 cells. Inhibition of EGFR kinase activity by AG494 in contrast to AG1478 had no effect on the activity of ERK in both cell lines. Both EGFR's inhibitors induced apoptosis of the investigated lung and prostate cancer cell lines, but the proapoptotic effect of the investigated tyrphostins was greater in A549 than in DU145 cells. The tyrphostins arrested cell growth of DU145 and A549 cells in the G1 phase, similarly to other known inhibitors of EGFR. The influence of AG494 and AG1478 on the activity of two signaling proteins (AKT and ERK) was dependent upon the kind of investigated cells. In the case of DU145 cells, there was an evident decline in enzymatic activity of both kinases (stronger for AG1478), while in A549, only AG1478 effectively inhibited the phosphorylation of Akt. Tyrphostins AG494 and AG1478 are ATP-competitors and are supposed to have a similar mechanism of action, but our results suggest that this is not quite true.  相似文献   

20.
Tyrphostin AG1478 is known as a specific and reversible inhibitor of TK (tyrosine kinase) activity of the EGFR [EGF (epidermal growth factor) receptor]. It is attractive as an anticancer agent for cancers with elevated EGFR TK levels. However, post‐application effects of AG1478 are not well studied. We have analysed EGFR phosphorylation after termination of AG1478 application using human epidermoid carcinoma A431 cells. It was found that AG1478 inhibitory action is fast, but not fully reversible: removal of tyrphostin resulted in incomplete restoration of the overall EGFR phosphorylation. Analysing the state of two individual autophosphorylation sites of internalized EGFR, Tyr1045 and Tyr1173, we demonstrated that phosphorylation of Tyr1173 involved in stimulation of the MAPK (mitogen‐activated protein kinase) cascade was restored much more efficiently than that in position 1045, which binds the ubiquitin ligase c‐Cbl and is necessary for targeting the receptor for lysosomal degradation. c‐Cbl association with EGFR abolished by AG1478 was not reestablished after tyrphostin cessation. As a consequence, ubiquitination‐dependent EGFR delivery to lysosomes was blocked, while phosphorylation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) was even increased. Thus, after termination of AG1478, the intracellular level of the inhibitor can be reached at which mitogenic signalling will be restored, whereas the EGFR negative regulation due to lysosomal degradation will not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号