首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Candida albicans secreted aspartyl proteinases in virulence and pathogenesis.   总被引:14,自引:0,他引:14  
Candida albicans is the most common fungal pathogen of humans and has developed an extensive repertoire of putative virulence mechanisms that allows successful colonization and infection of the host under suitable predisposing conditions. Extracellular proteolytic activity plays a central role in Candida pathogenicity and is produced by a family of 10 secreted aspartyl proteinases (Sap proteins). Although the consequences of proteinase secretion during human infections is not precisely known, in vitro, animal, and human studies have implicated the proteinases in C. albicans virulence in one of the following seven ways: (i) correlation between Sap production in vitro and Candida virulence, (ii) degradation of human proteins and structural analysis in determining Sap substrate specificity, (iii) association of Sap production with other virulence processes of C. albicans, (iv) Sap protein production and Sap immune responses in animal and human infections, (v) SAP gene expression during Candida infections, (vi) modulation of C. albicans virulence by aspartyl proteinase inhibitors, and (vii) the use of SAP-disrupted mutants to analyze C. albicans virulence. Sap proteins fulfill a number of specialized functions during the infective process, which include the simple role of digesting molecules for nutrient acquisition, digesting or distorting host cell membranes to facilitate adhesion and tissue invasion, and digesting cells and molecules of the host immune system to avoid or resist antimicrobial attack by the host. We have critically discussed the data relevant to each of these seven criteria, with specific emphasis on how this proteinase family could contribute to Candida virulence and pathogenesis.  相似文献   

3.
Candida albicans is the most common cause of fungal bloodstream infections. To invade the deep tissues, blood-borne organisms must cross the endothelial cell lining of the vasculature. We have found previously that C. albicans hyphae, but not blastospores, invade endothelial cells in vitro by inducing their own endocytosis. Therefore, we set out to identify the endothelial cell receptor that mediates the endocytosis of C. albicans. We determined that endocytosis of C. albicans was not mediated by bridging molecules in the serum and that it was partially dependent on the presence of extracellular calcium. Using an affinity purification procedure, we discovered that endothelial cell N-cadherin bound to C. albicans hyphae but not blastospores. N-cadherin also co-localized with C. albicans hyphae that were being endocytosed by endothelial cells. Chinese hamster ovary (CHO) cells expressing human N-cadherin endocytosed significantly more C. albicans hyphae than did CHO cells expressing either human VE-cadherin or no human cadherins. The expression of N-cadherin by the CHO cells resulted in enhanced endocytosis of hyphae, but not blastospores, indicating the selectivity of the N-cadherin-mediated endocytosis. Down-regulation of endothelial cell N-cadherin expression with small interfering RNA significantly inhibited the endocytosis of C. albicans hyphae. Therefore, a novel function of N-cadherin is that it serves as an endothelial cell receptor, which mediates the endocytosis of C. albicans.  相似文献   

4.
5.
Candida albicans, the most common facultative human pathogenic fungus is of major medical importance, whereas the closely related species Candida dubliniensis is less virulent and rarely causes life-threatening, systemic infections. Little is known, however, about the reasons for this difference in pathogenicity, and especially on the interactions of C. dubliniensis with the human immune system. Because innate immunity and, in particular, neutrophil granulocytes play a major role in host antifungal defense, we studied the responses of human neutrophils to clinical isolates of both C. albicans and C. dubliniensis. C. dubliniensis was found to support neutrophil migration and fungal cell uptake to a greater extent in comparison with C. albicans, whereas inducing less neutrophil damage and extracellular trap formation. The production of antimicrobial reactive oxygen species, myeloperoxidase, and lactoferrin, as well as the inflammatory chemokine IL-8 by neutrophils was increased when stimulated with C. dubliniensis as compared with C. albicans. However, most of the analyzed macrophage-derived inflammatory and regulatory cytokines and chemokines, such as IL-1α, IL-1β, IL-1ra, TNF-α, IL-10, G-CSF, and GM-CSF, were less induced by C. dubliniensis. Similarly, the amounts of the antifungal immunity-related IL-17A produced by PBMCs was significantly lower when challenged with C. dubliniensis than with C. albicans. These data indicate that C. dubliniensis triggers stronger early neutrophil responses than C. albicans, thus providing insight into the differential virulence of these two closely related fungal species, and suggest that this is, in part, due to their differential capacity to form hyphae.  相似文献   

6.
Candida albicans is a common cause of nosocomial infections whose virulence depends on the reversible switch from blastoconidia to hyphal forms. Neutrophils (or polymorphonuclear leukocytes (PMNs)) readily clear blastoconidia by phagocytosis, but filaments are too long to be ingested. Mechanisms regulating immune recognition and response to filamentous fungal pathogens are not well understood, although known risk factors for developing life-threatening infections are neutropenia or defects in the NADPH oxidase system. We show human PMNs generate a respiratory burst response to unopsonized hyphae. Ab specific for beta-glucan, a major component of yeast cell walls, blocks this response, establishing beta-glucan as a key molecular pattern recognized by PMNs in response to C. albicans. This study also elucidates recognition and signaling mechanisms used by PMNs in response to beta-glucan under conditions where phagocytosis cannot occur. Human PMNs adhered to immobilized beta-glucan and released an efficient plasma membrane respiratory burst. Ab blockade of the integrin complement receptor 3 (CD11b/CD18) significantly inhibited both of these functions. Furthermore, we show a role for p38 MAPK and actin but not protein kinase C zeta in generating the respiratory burst to beta-glucan. Taken together, results show that beta-glucan in C. albicans hyphae is accessible to PMNs and sufficient to support an innate immune response.  相似文献   

7.
The pathogenicity of the opportunistic human fungal pathogen Candida albicans depends on its ability to inhibit effective destruction by host phagocytes. Using live cell video microscopy, we show here for the first time that C. albicans inhibits cell division in macrophages undergoing mitosis. Inhibition of macrophage cell division is dependent on the ability of C. albicans to form hyphae, as it is rarely observed following phagocytosis of UV-killed or morphogenesis-defective mutant Candida. Interestingly, failed cell division following phagocytosis of hyphal C. albicans is surprisingly common, and leads to the formation of large multinuclear macrophages. This raises question as to whether inhibition of macrophage cell division is another virulence attribute of C. albicans or enables host macrophages to contain the pathogen.  相似文献   

8.
白念珠菌是人体重要的条件性致病真菌。形态的多样性和可塑性是白念珠菌典型的生物学特征,这与它的致病性、宿主适应能力以及有性生殖过程密切相关。白念珠菌生物被膜(Biofilm)是由不同形态细胞(包括酵母型、菌丝和假菌丝)以及胞外基质组成的致密结构,也是毒性和耐药性形成的重要因子。生物被膜对抗真菌药物、宿主免疫系统和环境胁迫因子等都表现出较强的抵抗力和耐受性,是临床上病原真菌感染防治的重大挑战。随着基因表达谱和遗传操作技术的发展,白念珠菌生物被膜的形成及其耐药性的获得所依赖的遗传调控通路和分子调控机制越来越清楚。主要包括MAPK和cAMP介导的信号途径以及Bcr1和Tec1等因子介导的转录调控。此外,白念珠菌生物被膜的形成与形态转换和有性生殖之间存在密切的联系。文中综述了白念珠菌生物被膜形成的遗传调控机制,重点介绍了细胞壁相关蛋白、转录因子和交配型对该过程的调控以及生物被膜的耐药机制。  相似文献   

9.
Mannoproteins are fungal cell wall components which play a main role in host-parasite relationship. Camp65p is a putative beta-glucanase mannoprotein of 65 kDa which has been characterized as a main target of human immune response against Candida albicans. However, nothing is known about its specific contribution to the biology and virulence of this fungus. We constructed CAMP65 knock-out mutants including null camp65/camp65 and CAMP65/camp65 heterozygous strains. The null strains had the same growth rate and morphology under yeast form as the wild-type strain but they were severely affected in hyphal morphogenesis both in vitro and in vivo. Hyphae formation was restored in revertant strains. The null mutants lost adherence to the plastic, and this was in keeping with the strong inhibition of fungal cell adherence to plastic exerted by anti-Camp65p antibodies. The null mutants were also significantly less virulent than the parental strains, and this loss of virulence was observed both in systemic and in mucosal C. albicans infection models. Nonetheless, the virulence in both infectious models was regained by the CAMP65 revertants. Thus, CAMP65 of C. albicans encodes a putative beta-glucanase, mannoprotein adhesin, which has a dual role (hyphal cell wall construction and virulence), accounting for the particular relevance of host immune response against this mannoprotein.  相似文献   

10.
Candida albicans and C. dubliniensis are very closely related yeast species. In this study, we have conducted a thorough comparison of the ability of the two species to produce hyphae and their virulence in two infection models. Under all induction conditions tested C. albicans consistently produced hyphae more efficiently than C. dubliniensis. In the oral reconstituted human epithelial model, C. dubliniensis isolates grew exclusively in the yeast form, while the C. albicans strains produced abundant hyphae that invaded and caused significant damage to the epithelial tissue. In the oral-intragastric infant mouse infection model, C. dubliniensis strains were more rapidly cleared from the gastrointestinal tract than C. albicans. Immunosuppression of Candida-infected mice caused dissemination to internal organs by both species, but C. albicans was found to be far more effective at dissemination than C. dubliniensis. These data suggest that a major reason for the comparatively low virulence of C. dubliniensis is its lower capacity to produce hyphae.  相似文献   

11.
12.
13.
An in vitro model of granuloma formation was used to study the cellular immune responses of Schistosoma mansoni-infected patients. The purposes of this study were to determine the relationship of granulomatous hypersensitivity to S. mansoni eggs in recent, well-defined infections and long-term chronic infections, and to determine the role of T cell subsets (OKT3, 4, and 8) defined by monoclonal antibodies in granulomatous hypersensitivity. Peripheral blood mononuclear cells obtained from patients with recent S. mansoni infections demonstrated increased granulomatous hypersensitivity responses in vitro when compared to peripheral blood mononuclear cells obtained from patients infected for 5 yr or more. The selective removal of infected for 5 yr or more. The selective removal of OKT3+ or OKT4+ cells reduced the ability of peripheral blood mononuclear cells to form granulomas in vitro. Positive selection for OKT4+ T cells produced optimal granulomatous hypersensitivity when compared to that produced by the unfractionated peripheral blood mononuclear cell population. OKT8+ cells demonstrated no ability to form granulomas in vitro. Selective removal of OKT8+ T cells produced variable results in the ability of the remaining peripheral blood mononuclear cells to form granulomas in vitro. These studies demonstrate the feasibility of investigating granulomatous hypersensitivity and immunoregulatory mechanisms operative in S. mansoni-infected patients by using in vitro technology.  相似文献   

14.
Cells of Candida albicans (C. albicans) can invade humans and may lead to mucosal and skin infections or to deep-seated mycoses of almost all inner organs, especially in immunocompromised patients. In this context, both the host immune status and the ability of C. albicans to modulate the expression of its virulence factors are relevant aspects that drive the candidal susceptibility or resistance; in this last case, culminating in the establishment of successful infection known as candidiasis. C. albicans possesses a potent armamentarium consisting of several virulence molecules that help the fungal cells to escape of the host immune responses. There is no doubt that the secretion of aspartyl-type proteases, designated as Saps, are one of the major virulence attributes produced by C. albicans cells, since these hydrolytic enzymes participate in a wide range of fungal physiological processes as well as in different facets of the fungal-host interactions. For these reasons, Saps clearly hold promise as new potential drug targets. Corroborating this hypothesis, the introduction of new anti-human immunodeficiency virus drugs of the aspartyl protease inhibitor-type (HIV PIs) have emerged as new agents for the inhibition of Saps. The introduction of HIV PIs has revolutionized the treatment of HIV disease, reducing opportunistic infections, especially candidiasis. The attenuation of candidal infections in HIV-infected individuals might not solely have resulted from improved immunological status, but also as a result of direct inhibition of C. albicans Saps. In this article, we review updates on the beneficial effects of HIV PIs against the human fungal pathogen C. albicans, focusing on the effects of these compounds on Sap activity, growth behavior, morphological architecture, cellular differentiation, fungal adhesion to animal cells and abiotic materials, modulation of virulence factors, experimental candidiasis infection, and their synergistic actions with classical antifungal agents.  相似文献   

15.
16.
17.
Neutrophils phagocytose and kill microbes upon phagolysosomal fusion. Recently we found that activated neutrophils form extracellular fibres that consist of granule proteins and chromatin. These neutrophil extracellular traps (NETs) degrade virulence factors and kill Gram positive and negative bacteria. Here we show for the first time that Candida albicans, a eukaryotic pathogen, induces NET-formation and is susceptible to NET-mediated killing. C. albicans is the predominant aetiologic agent of fungal infections in humans, particularly in immunocompromised hosts. One major virulence trait of C. albicans is its ability to reversibly switch from singular budding cells to filamentous hyphae. We demonstrate that NETs kill both yeast-form and hyphal cells, and that granule components mediate fungal killing. Taken together our data indicate that neutrophils trap and kill ascomycetous yeasts by forming NETs.  相似文献   

18.
Deletion of the kexin gene (KEX2) in Candida albicans has a pleiotropic effect on phenotype and virulence due partly to a defect in the expression of two major virulence factors: the secretion of active aspartyl proteinases and the formation of hyphae. kex2/kex2 mutants are highly attenuated in a mouse systemic infection model and persist within cultured macrophages for at least 24 h without causing damage. Pathology is modest, with little disruption of kidney matrix. The infecting mutant cells are largely confined to glomeruli, and are aberrant in morphology. The complex phenotype of the deletion mutants reflects a role for kexin in a wide range of cellular processes. Taking advantage of the specificity of Kex2p cleavage, an algorithm we developed to scan the 9168 open reading frames in Assembly 6 of the C. albicans genome identified 147 potential substrates of Kex2p. These include all previously identified substrates, including eight secreted aspartyl proteinases, the exoglucanase Xog1p, the immunodominant antigen Mp65, and the adhesin Hwp1p. Other putative Kex2p substrates identified include several adhesins, cell wall proteins, and hydrolases previously not implicated in pathogenesis. Kexins also process fungal mating pheromones; a modification of the algorithm identified a putative mating pheromone with structural similarities to Saccharomyces cerevisiae alpha-factor.  相似文献   

19.
We explored the host-pathogen interactions of the human opportunistic fungus Candida albicans using Drosophila melanogaster. We established that a Drosophila strain devoid of functional Toll receptor is highly susceptible to the human pathogen C. albicans. Using this sensitive strain, we have been able to show that a set of specific C. albicans mutants of different virulence in mammalian infection models are also impaired in virulence in Drosophila and remarkably display the same rank order of virulence. This immunodeficient insect model also revealed virulence properties undetected in an immunocompetent murine model of infection. The genetic systems available in both host and pathogen will enable the identification of host-specific components and C. albicans genes involved in the host-fungal interplay.  相似文献   

20.
We have demonstrated in a previously described murine model of gastrointestinal (GI) and systemic candidiasis that the antifungal angent cilofungin was efficacious in clearing infection of body organs when administered subcutaneously by infusion, but permitted large numbers of Candida albicans in the GI tract to persist. Yeast and hyphae in these animals were associated primarily with the stratified squamous epithelium of the stomach. Administration of immunocompromising drugs (cyclophosphamide plus cortisone acetate) to animals with persistent GI infection resulted in relapse of systemic candidiasis. Histological examination of the gastric mucosa revealed invasive hyphal elements and yeast as well as multiple chlamydospore-like cells. Comparative histochemical and electron-microscopic examinations of these latter cells produced in host tissue and chlamydospores formed in vitro were conducted. The results suggested that similarities in wall and cytoplasmic composition and ultrastructure exist between these in vivo and in vitro produced C. albicans cells. Exposure of C. albicans to cyclophosphamide during in vitro growth resulted in stimulation of chlamydospore production. No significant effect of cortisone acetate on C. albicans morphogenesis was detected. The murine model used in this study permits investigation of the formation of chlamydospore-like cells of C. albicans during early stages of fungal invasion of cyclophosphamide-treated mice, and of the possible influence of these cells on immunological response of the host to persistent candidiasis of the GI tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号