首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genes encoding thiamine kinase in Escherichia coli (ycfN) and thiamine pyrophosphokinase in Bacillus subtilis (yloS) have been identified. This study completes the identification of the thiamine salvage enzymes in bacteria.  相似文献   

2.
Both thiamine disulfide and O-benzoyl thiamine disulfide, which are thiolfrom derivatives of thiamine, strongly inhibited thiamine transport in Saccharomyces cerevisiae. The inhibition appeared to be due to a high affinity of the analogs for yeast cell membranes, in which thiamine transport component(s) may be integrated.  相似文献   

3.
4.
In this work, we investigated the rate of formation of the central intermediate of the transketolase reaction with thiamine diphosphate (ThDP) or 4′-methylamino-ThDP as cofactors and its stability using stopped-flow spectroscopy and circular dichroism (CD) spectroscopy. The intermediates of the transketolase reaction were analyzed by NMR spectroscopy. The kinetic stability of the intermediate was shown to be dependent on the state of the amino group of the coenzyme. The rates of the intermediate formation were the same in the case of the native and methylated ThDP, but the rates of the protonation or oxidation of the complex in the ferricyanide reaction were significantly higher in the complex with methylated ThDP. A new negative band was detected in the CD spectrum of the complex transketolase—4′-methylamino-ThDP corresponding to the protonated dihydroxyethyl-4′-methylamino-ThDP released from the active sites of the enzyme. These data suggest that transketolase in the complex with the NH2-methylated ThDP exhibits dihydroxyethyl-4′-methylamino-ThDP-synthase activity. Thus, the 4′-amino group of the coenzyme provides kinetic stability of the central intermediate of the transketolase reaction, dihydroxyethyl-ThDP.  相似文献   

5.
Bacimethrin is an analog of the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) moiety of thiamine and inhibits the growth of Salmonella enterica serovar Typhimurium on a defined medium. Two classes of mutants that had increased bacimethrin resistance were isolated and characterized. Results showed that overexpression of the thi operon or specific lesions in thiD resulted in a bacimethrin-resistant phenotype. Phenotypic analyses of the thiD mutants suggested that they had a specific defect in one of the two kinase activities associated with this gene product and, further, that ThiD and not PdxK was primarily responsible for salvage of HMP from the medium.  相似文献   

6.
Thiamine and thiamine mono-, pyro- and triphosphate were found at detectable levels in synaptosomes isolated from whole rat brain. Synaptosomes prepared from whole brain, cerebellum and medulla were also found to contain uridine and inosine mono- and diphosphatases as well as the thiamine pyrophosphate synthetizing and hydrolyzing enzymes, but no thiamine monophosphatase. By isoelectric focusing on thin layer polyacrylamide gel of Triton X-100 homogenates of synaptosomes, thiamine pyrophosphatase activity could be separated into 10 bands with different isoelectric points. The contents of thiamine compounds and enzymes in synaptosomes were generally lower than those found in neuronal cell bodies.  相似文献   

7.
An isocratic HPLC procedure for the assessment of thiamine (T), thiamine monophosphate (TMP) and thiamine diphosphate (TDP) in human erythrocytes is described. Several aspects of the procedure make it suitable for both clinical and research purposes: limits of detection and quantification of 1 and 2.5 nmol/l, respectively, recovery of 102% on average (range 93-112%), intra- and inter-day precisions within 5 and 9%, respectively, total elution time 15 min. This analytical methodology was applied to a case-control study on erythrocyte samples from 103 healthy subjects and 36 alcohol-dependent patients at risk of thiamine deficiency. Mean control values obtained were: T=89.6+/-22.7 nmol/l, TMP=4.4+/-6.6 nmol/l and TDP=222.23+/-56.3 nmol/l. T and TDP mean values of alcoholics were significantly lower than those of control cases: T=69.4+/-35.9 nmol/l (P<0.001) and TDP=127.4+/-62.5 nmol/l (P<10(-5)). The diagnostic role of TDP was evaluated and a significant role for thiamine was established in the study of alcohol related problems.  相似文献   

8.
9.
10.
11.
12.
A rapid efficient method of separation of the thiamine pyrophosphokinase reaction products (ATP: thiamine pyrophosphotransferase) on the column packed with DEAE-Sephadex A-25 and their subsequent identification by direct spectrophotometry is suggested. Phosphorylation of some thiamine analogs substituted at the second position of the pyrimidine ring was studied. It was shown that in addition to thiamine, the enzyme transfers the pyrophosphate group to some of its derivatives. The vitamin analogs devoid of quaternary nitrogen in the thiazole cycle, do not form pyrophosphate ethers (thus being unable to act as substrates), whereas 2'-phenoxythiamine, 2'-methoxythiamine and especially 2'-phenylthiamine are phosphorylated at a greater rate than does the "true" substrate, thiamine, under similar conditions.  相似文献   

13.
Thiamine state was investigated in patients with alcoholic liver disease, patients with various non-alcoholic liver diseases, and controls using a direct technique (thiochrome assay) to measure thiamine, thiamine monophospate, and the active coenzyme thiamine pyrophosphate in whole blood after isolating the fractions by ion exchange chromatography. Overall nutrition was similar in all groups as assessed by anthropometry, and no patient had clinical evidence of thiamine deficiency. There was no significant difference among the groups in mean concentration of any form of thiamine. The scatter was much greater in patients with alcoholic liver disease but only 8.7% had biochemical thiamine deficiency (defined as a blood concentration of the active coenzyme greater than 2 SD below the mean control value). An unexpected finding was of abnormally high total thiamine concentrations (greater than 2 SD above the mean control value) in 17.4% of patients with alcoholic liver disease, the highest concentrations being found in two patients with severe alcoholic hepatitis and cirrhosis. The ratio of phosphorylated to unphosphorylated thiamine was calculated as an index of phosphorylation and, although the mean did not differ significantly among the groups, the range was greatest in alcoholic liver disease. The lowest ratios occurred in the two patients with severe alcoholic hepatitis, but neither had evidence of thiamine pyrophosphate deficiency. Contrary to studies using indirect assay techniques, these results suggest that thiamine deficiency is unusual in well nourished patients with alcoholic liver disease. The new finding of unexpectedly high thiamine concentrations in some patients may be due to abnormalities of hepatic storage or release in liver disease, particularly in severe alcoholic hepatitis. There was no convincing evidence of impaired thiamine phosphorylation in any patients with liver disease. Conclusions from studies using indirect assays on the prevalence and mechanisms of thiamine deficiency in liver diseases may not be valid.  相似文献   

14.
Abstract— The effects of thiamine deprivation and of treatment with the thiamine antagonists, oxythiamine and pyrithiamine, on the storage and synthesis of acetylcholine were studied in rats. Rats treated with pyrithiamine always developed ataxia and convulsions, and they died in an average of 36 ± 5.0 hr after onset of convulsions. Injections of sublethal doses of eserine after onset of convulsions had no effect or shortened survival time. If injections were started before the onset of convulsions, the survival time was increased to 56 ± 3.3 hr. The content of total acetylcholine-like compounds, measured by bioassay, in the brain was decreased in all three types of thiamine deficiency. On the other hand, the amount of parenterally administered [14C]pyruvate converted to [14C]acetylcholine in vivo was affected only by treatment with pyrithiamine. The increase found was probably due to an increased permeability of the blood-brain barrier to the pyruvate. Conversion of [14C]pyruvate to [14C]acetylcholine in vitro was decreased significantly in homogenates of brains from both oxythiamine and pyrithiamine-treated animals.  相似文献   

15.
16.
17.
Participation of the enzyme which provides the phosphorylation of thiamine to thiamindiphosphate (TDP) thiaminkinase (thiaminpyrophosphokinase, KF 2.7.6.2) of rat brain in the realization of thiamine action on the syntheses of acethylcholine (AC) was studied. The thiamine and its structure analogue, which differ the nature of the radicals in the 3-d and 5-e positions of the thiazollium cycle were used: 3-[(4-amino-2methylpyrimidinyl-5)methyl]-4-methylthiazolium chloride, 3-decyloxycarbonylmethyl-4-metyl-5-beta-hydrozyethylthiazolium chloride, 3-decyloxycarbonylmethyl-4-methylthiazolium chloride. All salts in the concentrations lower then Km render active influence on thiaminkinase. The analysis of data shows the presence of the regulation site on the enzyme distinguishing from the active enzyme centre and participating in the interaction with which the hydrophobic fragments of thiamine molecule participating. The comparative studies of thiamine and above mentioned derivatives influence on the inclusion of the labelled carbon with [2-(14)C] pyruvate in acethylcholine confirm an assumption about the key-role of the thiamine interaction with thiaminkinase (meaning its phosphorilation) regarding its action on the acethylcholine syntheses, and probably, on the function of the nervous cells as a whole.  相似文献   

18.
Thiamine pyrophosphate-ATP phosphoryltransferase, the enzyme that catalyzes the synthesis of thiamine triphosphate, has been found in the supernatant fraction of rat liver. The substrate for the enzyme is endogenous, bound thiamine pyrophosphate, since the addition of exogenous thiamine pyrophosphate had no effect. Thus, when a rat liver supernatant was incubated with gamma-labelled [32P]ATP, thiamine [32P]triphosphate was formed whereas the incubation of thiamine [32P]pyrophosphate with ATP did not produce thiamine [32P]triphosphate. The endogenous thiamine pyrophosphate was found to be bound to a high molecular weight protein which comes out in the void volume of Sephadex G-75, and is not dialyzable. The activity that catalyzes the formation of thiamine triphosphate has an optimum pH between 6 and 6.5, a linear time course of thiamine triphosphate synthesis up to 30 min, and is not affected by Ca2+, cyclic GMP and sulfhydryl reagents.  相似文献   

19.
20.
BackgroundThiamine deficiency (TD) has a number of features in common with the neurodegenerative diseases development and close relationship between TD and oxidative stress (OS) has been repeatedly reported in the literature. The aim of this study is to understand how alimentary TD, accompanied by OS, affects the expression and level of two thiamine metabolism proteins in rat brain, namely, thiamine transporter 1 (THTR1) and thiamine pyrophosphokinase (TPK1), and what factors are responsible for the observed changes.MethodsThe effects of OS caused by TD on the THTR1and TPK1 expression in rat cortex, cerebellum and hippocampus were examined. The levels of active and oxidized forms of ThDP (enzymatically measured) in the blood and brain, ROS and SH-groups in the brain were also analyzed.ResultsTD increased the expression of THTR1 and protein level in all studied regions. In contrast, expression of TPK1 was depressed. TD-induced OS led to the accumulation of ThDP oxidized inactive form (ThDPox) in the blood and brain. In vitro reduction of ThDPox by dithiothreitol regenerates active ThDP suggesting that ThDPox is in disulfide form. A single high-dose thiamine administration to TD animals had no effect on THTR1 expression, partly raised TPK1 mRNA and protein levels, but is unable to normalize TPK1 enzyme activity. Brain and blood ThDP levels were increased in these conditions, but ThDPox was not decreased.General significanceIt is likely, that the accumulation of ThDPox in tissue could be seen as a potential marker of neurocellular dysfunction and thiamine metabolic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号