首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Many human papillomavirus (HPV)-positive high-grade lesions and cancers of the uterine cervix harbor integrated HPV genomes expressing the E6 and E7 oncogenes from chimeric virus-cell mRNAs, but less is known about HPV integration in head and neck cancer (HNC). Here we compared viral DNA status and E6-E7 mRNA sequences in HPV-16-positive HNC tumors to those in independent human keratinocyte cell clones derived from primary tonsillar or foreskin epithelia immortalized with HPV-16 genomes. Three of nine HNC tumors and epithelial clones containing unintegrated HPV-16 genomes expressed mRNAs spliced from HPV-16 SD880 to SA3358 and terminating at the viral early gene p(A) signal. In contrast, most integrated HPV genomes in six HNCs and a set of 31 keratinocyte clones expressed HPV-16 major early promoter (MEP)-initiated mRNAs spliced from viral SD880 directly to diverse cellular sequences, with a minority spliced to SA3358 followed by a cellular DNA junction. Sequence analysis of chimeric virus-cell mRNAs from HNC tumors and keratinocyte clones identified viral integration sites in a variety of chromosomes, with some located in or near growth control genes, including the c-myc protooncogene and the gene encoding FAP-1 phosphatase. Taken together, these findings support the hypothesis that HPV integration in cancers is a stochastic process resulting in clonal selection of aggressively expanding cells with altered gene expression of integrated HPV genomes and potential perturbations of cellular genes at or near viral integration sites. Furthermore, our results demonstrate that this selection also takes place and can be studied in primary human keratinocytes in culture.  相似文献   

3.
Human papillomaviruses (HPV) 16 and 18 are closely linked with human genital cancer. In most cervical carcinomas, viral sequences are integrated into the host genome. HeLa, a cervical carcinoma cell line, has multiple copies of integrated HPV 18 DNA. In this study, in situ chromosome hybridization was used to assign the integration sites of HPV 18 DNA sequences on HeLa cell chromosomes. Four sites of hybridization were identified at 8q23----q24, 9q31----q34, p11----p13 on an abnormal chromosome 5, and q12----q13 on an abnormal 22. Three of these sites correspond with the locations of MYC, ABL, and SIS protooncogenes, and are at or in close proximity to fragile sites. The chromosomal localization of HPV 18 DNA may be useful in assessing the role of viral integration in the development of this malignancy.  相似文献   

4.
5.
We have isolated four clones of integrated human papillomavirus type 16 (HPV-16) DNA from four different primary cervical cancer specimens. All clones were found to be monomeric or dimeric forms of HPV-16 DNA with cellular flanking sequences at both ends. Analysis of the viral sequences in these clones showed that E6/E7 open reading frames and the long control region were conserved and that no region specific for the integration was detected. Analysis of the cellular flanking sequences revealed no significant homology with any known human DNA sequences, except Alu sequences, and no homology among the clones, indicating no cellular sequence specific for the integration. By probing with single-copy cellular flanking sequences from the clones, it was demonstrated that the integrated HPV-16 DNAs, with different sizes in the same specimens, shared the same cellular flanking sequences at the ends. Furthermore, it was shown that the viral sequences together with cellular flanking sequences were amplified. The possible process of viral integration into cell chromosomes in cervical cancer is discussed.  相似文献   

6.
Integrated human papillomavirus type 16 (HPV16) sequences were cloned from a cervical carcinoma and analyzed by restriction mapping and nucleotide sequencing. The viral integration sites were mapped within the E1 and E2 open reading frames (ORFs). The E4 and E5 ORFs were entirely deleted. An internal deletion of 376 base pairs (bp) was found disrupting the L1 and L2 ORFs. Sequencing analysis showed that an AGATGT/ACATCT inverted repeat marked the deletion junction with two flanking direct repeats 14 and 8 bp in length. A 1,330-bp sequence duplication containing the long control region (LCR) and the E6 and E7 ORFs was also found. The duplication junction was formed by two 24-bp direct repeats with 79% (19 of 24) homology located within the LCR and the E2 ORF of the prototype viral genome, respectively. This observation leads us to propose that the initial viral integration involved an HPV16 dimer in which the direct repeats in tandem units recombined, resulting in reiteration of only a portion of the original duplication. A guanosine insertion between nucleotides 1137 and 1138 created a continuous E1 ORF which was previously shown to be disrupted. Results from this study indicate that sequence reiteration and internal deletion in the integrated, and possibly in the episomal, HPV16 genome are influenced by specific nucleotide sequences in the viral genome. Moreover, reiteration of the LCR/E6/E7 sequences further supports the hypothesis that the E6/E7 ORFs may code for oncogenic proteins and that regulatory signals in the LCR may play a role in cellular transformation.  相似文献   

7.
8.
9.
10.
11.
Cervical cancer is rated the second most common malignant tumour globally, and is aetiologically linked to human papillomavirus (HPV) infection. Here the cellular pathology under consideration of stem/progenitor cell carcinogenesis is reviewed. Of the three causative molecular mechanisms of cervical cancer, two are associated with HPV: firstly, the effect of the viral oncogenes, E6 and E7; and secondly, integration of the viral DNA into chromosomal regions of tumour phenotype. The third process involved is the repetitive loss of heterozygosity in some chromosomal regions. HPV can be classified into high- and low-risk types; the high-risk types encode two oncoproteins, E6 and E7, which interact with tumour suppressor proteins. The association results in the inactivation of tumour suppressor proteins and the abrogation of apoptosis. Apoptosis is referred to as programmed cell death, whereby a cell deliberately commits suicide, and thus regulates cell numbers during development and maintenance of cellular homeostasis. This review attempts to elucidate the role of apoptotic genes, and considers external factors that interact with HPV in the development and progression of cervical cancer. Therefore, an in-depth understanding of the apoptotic genes that control molecular mechanisms in cervical cancer are of critical importance. Useful targets for therapeutic strategies would be those that alter apoptotic pathways in a manner where the escape of HPV from surveillance by the host immune system is prevented. Such an approach directed at the apoptotic genes maybe useful in the treatment of cervical cancer.  相似文献   

12.
13.
14.
Integration of human papillomavirus type 16 (HPV-16) DNA into a host chromosome has been hypothesized to result in altered expression of two viral transforming genes, E6 and E7, in cervical cancers. In order to investigate the role that changes in viral genomic state and gene expression play in cervical carcinogenesis, we have derived clonal populations of human cervical epithelial cells which harbor multiple copies of either extrachromosomal or integrated viral DNA. The clonal populations harboring extrachromosomal HPV-16 DNA stably maintained approximately 1,000 viral copies for at least 15 passages (approximately 100 cell doublings), which contrasted with the unstable HPV-16 replicons in the parental counterpart. In the clonal populations harboring integrated viral DNA, 3 to 60 copies of HPV-16 DNA were found integrated in either of two forms: type 1, in which all the copies of HPV-16 DNA were disrupted in the E2 open reading frame upon integration, and type 2, in which intact viral copies were flanked by disrupted viral copies and cellular sequences. Despite the lower HPV-16 DNA copy number, the clonal populations with integrated viral DNA had levels of E7 protein that were in most cases higher than those found in the clonal populations harboring extrachromosomal viral DNA. Irrespective of viral genomic state, the clonal populations were capable of undergoing terminal differentiation and unable to form colonies in soft agar, which is indicative of the nontumorigenic nature of these cells. Importantly, a cell population with integrated viral DNA was found to outgrow another with extrachromosomal DNA when these cells were cocultured over a period of time. Thus, integration of human papillomaviral DNA correlates with increased viral gene expression and cellular growth advantage. These observations are consistent with the hypothesis that integration provides a selective advantage to cervical epithelial precursors of cervical carcinoma.  相似文献   

15.
16.
17.
We have analyzed cellular DNA sequences at the viral genome integration site in a human fibroblast cell line VA13 immortalized by simian virus 40 (SV40). The computer analysis of the junctional cellular DNA sequences did not show any homology to the DNA sequences previously reported. This suggests that immortalization by SV40 was not induced by the destruction of any known oncogene or anti-oncogene at the integration site. We did not find the precise substantial sequence homology at the junctional site between the cellular DNA and SV40 DNA, indicating that the recombination mechanism involved does not require precise sequence homology and therefore, SV40 genome was probably not integrated by homologous recombination. Short direct and inverted repeats of 5 to 29 nucleotides were found in the junctional cellular and SV40 DNA. Cellular DNA abutting SV40 DNA was found by the Northern blot analysis to be expressed in diploid human fibroblasts and SV40-transformed cells. The nature of this RNA is now under study.  相似文献   

18.
The integration sites in the cellular genome of human papillomavirus are located in chromosomal regions always associated with oncogenes or other known tumor phenotypes. Two regions, 8q24 and 12q13, are common to several cases of cervical carcinoma and can have integrated more than one type of papillomavirus DNA. These two chromosomal regions contain several genes implicated in oncogenesis. These observations strongly imply that viral integration sites of DNA tumor viruses can be used as the access point to chromosomal regions where genes implicated in the tumor phenotype are located, a situation similar to that of non-transforming retroviruses.  相似文献   

19.
DNA sequences of specific human papillomavirus (HPV) types are found integrated in the cell genome in most invasive genital carcinomas. We have determined the chromosomal localization of integrated HPV type 16 (HPV-16) or HPV-18 genomes in genital cancers by in situ hybridization experiments. In three cancers, HPV sequences were localized in chromosome band 8q24.1, in which the c-myc gene is mapped, and in one cancer HPV sequences were localized in chromosome band 2p24, which contains the N-myc gene. In three of the four cases, the proto-oncogene located near integrated viral sequences was found to be structurally altered and/or overexpressed. These data indicate that HPV genomes are preferentially integrated near myc genes in invasive genital cancers and support the hypothesis that integration plays a part in tumor progression via an activation of cellular oncogenes.  相似文献   

20.
Summary Genomic insertion of human papillomavirus (HPV) sequences is associated with the genesis of cervical carcinoma, and HPV-induced incipient cellular alterations may also present a requisite for the establishment of cell lines such as HeLa. Considering the theoretical importance of specific viral integration sites, we attempted to detect in HeLa cells the chromosomal location of DNA sequences homologous to HPV-16 and HPV-18 sequences by a nonisotopic high resolution in situ hybridization technique. Chromosome identification following in situ hybridization was possible by counterstaining of the same preparation with Chromomycin A3, Distamycin A, and DAPI. Using this approach, we have assigned HPV-18 integration in HeLa cells to band 8q24 (a site including the locus of the myc-protooncogene), to an abnormal chromosome 22, and to a not yet identified marker chromosome possibly neighboring other oncogenic or activating sites. The sensitive detection technique described in this study presents a new approach involving in situ chromosome hybridization with biotinylated DNA probes in combination with reflection contrast microscopy and subsequent fluorescent R-and C-banding. The method allowed the assignment of a 7-kb HPV-18 DNA probe to human chromosomal sites important in growth regulation and cancerogenesis. It should prove useful in a number of similar studies using other viral and oncogenic DNA probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号