首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Researchers have known for more than a century that crossing the hands can impair both tactile perception and the execution of appropriate finger movements. Sighted people find it more difficult to judge the temporal order when two tactile stimuli, one applied to either hand, are presented and their hands are crossed over the midline as compared to when they adopt a more typical uncrossed-hands posture. It has been argued that because of the dominant role of vision in motor planning and execution, tactile stimuli are remapped into externally defined coordinates (predominantly determined by visual inputs) that takes longer to achieve when external and body-centered codes (determined primarily by somatosensory/proprioceptive inputs) are in conflict and that involves both multisensory parietal and visual cortex. Here, we show that the performance of late, but not of congenitally, blind people was impaired by crossing the hands. Moreover, we provide the first empirical evidence for superior temporal order judgments (TOJs) for tactile stimuli in the congenitally blind. These findings suggest a critical role of childhood vision in modulating the perception of touch that may arise from the emergence of specific crossmodal links during development.  相似文献   

2.
Processing of tactile stimuli requires both localising the stimuli on the body surface and combining this information with a representation of the current posture. When tactile stimuli are applied to crossed hands, the system first assumes a prototypical (e.g. uncrossed) positioning of the limbs. Remapping to include the crossed posture occurs within about 300 ms. Since fingers have been suggested to be represented in a mainly somatotopic reference frame we were interested in how the processing of tactile stimuli applied to the fingers would be affected by an unusual posture of the fingers. We asked participants to report the direction of movement of two tactile stimuli, applied successively to the crossed or uncrossed index and middle fingers of one hand at different inter-stimulus intervals (15 to 700 ms). Participants almost consistently reported perceiving the stimulus direction as opposite to what it was in the fingers crossed condition, even with SOAs of 700 ms, suggesting that on average they did not incorporate the unusual relative finger positions. Therefore our results are in agreement with the idea that, by default, the processing of tactile stimuli assumes a prototypical positioning of body parts. However, in contrast to what is generally found with tactile perception with crossed hands, performance did not improve with SOAs as long as 700 ms. This suggests that the localization of stimuli in a somatotopic reference and the integration of this representation with postural information are two separate processes that apply differently to the hands and fingers.  相似文献   

3.
A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS). Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7), extrastriate cortex (BA18, BA19), and striate cortex (BA17) activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7), extrastriate cortex (BA18, 19), and striate cortex (BA17), as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.  相似文献   

4.
In this study we used a repeated measures design and univariate analysis of variance to study the respective effects of ISI, spatial attention and stimulus detection on the strengths of the sources previously identified by modelling SEFs during the 200 ms following mentally counted left median nerve stimuli delivered at long and random ISIs (Part I). We compared the SEF source strengths in response to frequent and rare stimuli, both in detection and ignoring conditions. This permitted us to establish a hierarchy in the effects of ISI, attention and stimulus detection on the activation of the cortical network of SEF sources distributed in SI and posterior parietal cortex contralateral to stimulation, and in the parietal operculum (SII) and premotor frontal cortex of both hemispheres. In all experimental conditions the SI and parietal opercular sources were the most active. All sources were more active in response to stimuli delivered at long and random ISIs and the frontal sources were activated only in this condition of stimulation. Driving the subject's attention toward the side stimulated had no detectable effect on the activity of SEF sources at short ISI. At long ISIs mental counting of the stimuli increased the responses of all sources except SI. These results suggest that activation of frontal sources during mental counting could reflect a working memory process, and that of posterior parietal sources a spatial attention effect detectable only at long ISIs.  相似文献   

5.
Our body feels like it is ours. However, individuals with body integrity identity disorder (BIID) lack this feeling of ownership for distinct limbs and desire amputation of perfectly healthy body parts. This extremely rare condition provides us with an opportunity to study the neural basis underlying the feeling of limb ownership, since these individuals have a feeling of disownership for a limb in the absence of apparent brain damage. Here we directly compared brain activation between limbs that do and do not feel as part of the body using functional MRI during separate tactile stimulation and motor execution experiments. In comparison to matched controls, individuals with BIID showed heightened responsivity of a large somatosensory network including the parietal cortex and right insula during tactile stimulation, regardless of whether the stimulated leg felt owned or alienated. Importantly, activity in the ventral premotor cortex depended on the feeling of ownership and was reduced during stimulation of the alienated compared to the owned leg. In contrast, no significant differences between groups were observed during the performance of motor actions. These results suggest that altered somatosensory processing in the premotor cortex is associated with the feeling of disownership in BIID, which may be related to altered integration of somatosensory and proprioceptive information.  相似文献   

6.
Neurons in posterior parietal cortex of the awake, trained monkey respond to passive visual and/or somatosensory stimuli. In general, the receptive fields of these cells are large and nonspecific. When these neurons are studied during visually guided hand movements and eye movements, most of their activity can be accounted for by passive sensory stimulation. However, for some visual cells, the response to a stimulus is enhanced when it is to be the target for a saccadic eye movement. This enhancement is selective for eye movements into the visual receptive field since it does not occur with eye movements to other parts of the visual field. Cells that discharge in association with a visual fixation task have foveal receptive fields and respond to the spots of light used as fixation targets. Cells discharging selectively in association with different directions of tracking eye movements have directionally selective responses to moving visual stimuli. Every cell in our sample discharging in association with movement could be driven by passive sensory stimuli. We conclude that the activity of neurons in posterior parietal cortex is dependent on and indicative of external stimuli but not predictive of movement.  相似文献   

7.
Changing reference frames during the encoding of tactile events   总被引:2,自引:0,他引:2  
The mindless act of swatting a mosquito on the hand poses a remarkable challenge for the brain. Given that the primary somatosensory cortex maps skin location independently of arm posture [1, 2], the brain must realign tactile coordinates in order to locate the origin of the stimuli in extrapersonal space. Previous studies have highlighted the behavioral relevance of such an external mapping of touch, which results from combining somatosensory input with proprioceptive and visual cues about body posture [3-7]. However, despite the widely held assumption about the existence of this remapping process from somatotopic to external space and various findings indirectly suggesting its consequences [8-11], a demonstration of its changing time course and nature was lacking. We examined the temporal course of this multisensory interaction and its implications for tactile awareness in humans using a crossmodal cueing paradigm [12, 13]. What we show is that before tactile events are referred to external locations [12-15], a fleeting, unconscious image of the tactile sensation abiding to a somatotopic frame of reference rules performance. We propose that this early somatotopic "glimpse" arises from the initial feed-forward sweep of neural activity to the primary somatosensory cortex, whereas the later externally-based, conscious experience reflects the activity of a somatosensory network involving recurrent connections from association areas.  相似文献   

8.
Manipulation of hand posture, such as crossing the hands, has been frequently used to study how the body and its immediately surrounding space are represented in the brain. Abundant data show that crossed arms posture impairs remapping of tactile stimuli from somatotopic to external space reference frame and deteriorates performance on several tactile processing tasks. Here we investigated how impaired tactile remapping affects the illusory self-touch, induced by the non-visual variant of the rubber hand illusion (RHI) paradigm. In this paradigm blindfolded participants (Experiment 1) had their hands either uncrossed or crossed over the body midline. The strength of illusory self-touch was measured with questionnaire ratings and proprioceptive drift. Our results showed that, during synchronous tactile stimulation, the strength of illusory self-touch increased when hands were crossed compared to the uncrossed posture. Follow-up experiments showed that the increase in illusion strength was not related to unfamiliar hand position (Experiment 2) and that it was equally strengthened regardless of where in the peripersonal space the hands were crossed (Experiment 3). However, while the boosting effect of crossing the hands was evident from subjective ratings, the proprioceptive drift was not modulated by crossed posture. Finally, in contrast to the illusion increase in the non-visual RHI, the crossed hand postures did not alter illusory ownership or proprioceptive drift in the classical, visuo-tactile version of RHI (Experiment 4). We argue that the increase in illusory self-touch is related to misalignment of somatotopic and external reference frames and consequently inadequate tactile-proprioceptive integration, leading to re-weighting of the tactile and proprioceptive signals.The present study not only shows that illusory self-touch can be induced by crossing the hands, but importantly, that this posture is associated with a stronger illusion.  相似文献   

9.
In monkeys, posterior parietal and premotor cortex play an important integrative role in polymodal motion processing. In contrast, our understanding of the convergence of senses in humans is only at its beginning. To test for equivalencies between macaque and human polymodal motion processing, we used functional MRI in normals while presenting moving visual, tactile, or auditory stimuli. Increased neural activity evoked by all three stimulus modalities was found in the depth of the intraparietal sulcus (IPS), ventral premotor, and lateral inferior postcentral cortex. The observed activations strongly suggest that polymodal motion processing in humans and monkeys is supported by equivalent areas. The activations in the depth of IPS imply that this area constitutes the human equivalent of macaque area VIP.  相似文献   

10.
The present functional magnetic resonance imaging (fMRI) study was designed to get a better understanding of the brain regions involved in sustained spatial attention to tactile events and to ascertain to what extent their activation was correlated. We presented continuous 20 Hz vibrotactile stimuli (range of flutter) concurrently to the left and right index fingers of healthy human volunteers. An arrow cue instructed subjects in a trial-by-trial fashion to attend to the left or right index finger and to detect rare target events that were embedded in the vibrotactile stimulation streams. We found blood oxygen level-dependent (BOLD) attentional modulation in primary somatosensory cortex (SI), mainly covering Brodmann area 1, 2, and 3b, as well as in secondary somatosensory cortex (SII), contralateral to the to-be-attended hand. Furthermore, attention to the right (dominant) hand resulted in additional BOLD modulation in left posterior insula. All of the effects were caused by an increased activation when attention was paid to the contralateral hand, except for the effects in left SI and insula. In left SI, the effect was related to a mixture of both a slight increase in activation when attention was paid to the contralateral hand as well as a slight decrease in activation when attention was paid to the ipsilateral hand (i.e., the tactile distraction condition). In contrast, the effect in left posterior insula was exclusively driven by a relative decrease in activation in the tactile distraction condition, which points to an active inhibition when tactile information is irrelevant. Finally, correlation analyses indicate a linear relationship between attention effects in intrahemispheric somatosensory cortices, since attentional modulation in SI and SII were interrelated within one hemisphere but not across hemispheres. All in all, our results provide a basis for future research on sustained attention to continuous vibrotactile stimulation in the range of flutter.  相似文献   

11.
Magnetoencephalography (MEG) is a totally non-invasive research method which provides information about cortical dynamics on a millisecond time-scale. Whole-scalp magnetic field patterns following stimulation of different peripheral nerves indicate activation of an extensive cortical network. At the SI cortex, the responses reflect mainly the activity of area 3b, with clearly somatotopical representations of different body parts. The SII cortex is activated bilaterally and it also receives, besides tactile input, nociceptive afference. Somatically evoked MEG signals may also be detected from the posterior parietal cortex, central mesial cortex and the frontal lobe. The serial versus parallel processing in the cortical somatosensory network is still under debate.  相似文献   

12.
Activity of 112 neurons of the precruciate motor cortex in cats was studied during a forelimb placing reaction to tactile stimulation of its distal parts. The latent period of response of the limb to tactile stimulation was: for flexors of the elbow (biceps brachii) 30–40 msec, for the earliest reponses of cortical motor neurons about 20 msec. The biceps response was observed 5–10 msec after the end of stimulation of the cortex with a series of pulses lasting 25 msec. Two types of excitatory responses of the neurons were identified: responses of sensory type observed to each tactile stimulation of the limb and independent of the presence or absence of motion, and responses of motor type, which developed parallel with the motor response of the limb and were not observed in the absence of motion. The minimal latent period of the responses of motor type was equal to the latent period of the sensory responses to tactile stimulation (20±10 msec). Stimulation of the cortex through the recording microelectrode at the site of derivation of unit activity, which increased during active flexion of the forelimb at the elbow (11 stimuli at intervals of 2.5 msec, current not exceeding 25 µA), in 70% of cases evoked an electrical response in the flexor muscle of the elbow.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 9, No. 2, pp. 115–123, March–April, 1977.  相似文献   

13.
Abstract

The neural substrates of tactile roughness perception have been investigated by many neuroimaging studies, while relatively little effort has been devoted to the investigation of neural representations of visually perceived roughness. In this human fMRI study, we looked for neural activity patterns that could be attributed to five different roughness intensity levels when the stimuli were perceived visually, i.e., in absence of any tactile sensation. During functional image acquisition, participants viewed video clips displaying a right index fingertip actively exploring the sandpapers that had been used for the behavioural experiment. A whole brain multivariate pattern analysis found four brain regions in which visual roughness intensities could be decoded: the bilateral posterior parietal cortex (PPC), the primary somatosensory cortex (S1) extending to the primary motor cortex (M1) in the right hemisphere, and the inferior occipital gyrus (IOG). In a follow-up analysis, we tested for correlations between the decoding accuracies and the tactile roughness discriminability obtained from a preceding behavioural experiment. We could not find any correlation between both although, during scanning, participants were asked to recall the tactilely perceived roughness of the sandpapers. We presume that a better paradigm is needed to reveal any potential visuo-tactile convergence. However, the present study identified brain regions that may subserve the discrimination of different intensities of visual roughness. This finding may contribute to elucidate the neural mechanisms related to the visual roughness perception in the human brain.  相似文献   

14.
Over 150 years ago, E.H. Weber declared that experience showed that tactile acuity was not affected by viewing the stimulated body part. However, more recent investigations suggest that cross-modal links do exist between the senses. Viewing the stimulated body site improves performance on tactile discrimination and detection tasks and enhances tactile acuity. Here, we show that vision modulates somatosensory cortex activity, as measured by somatosensory event-related potentials (ERPs). This modulation is greatest when tactile stimulation is task relevant. Visual modulation is not present in the P50 component reflecting the primary afferent input to the cortex but appears in the subsequent N80 component, which has also been localized to SI, the primary somatosensory cortex. Furthermore, we replicate previous findings that noninformative vision improves spatial acuity. These results are consistent with a hypothesis that vision modulates cortical processing of tactile stimuli via back projections from multimodal cortical areas. Several neurophysiological studies suggest that primary and secondary somatosensory cortex (SI and SII, respectively) activity can be modulated by spatial and tactile attention and by visual cues. To our knowledge, this is the first demonstration of direct modulation of somatosensory cortex activity by a noninformative view of the stimulated body site with concomitant enhancement of tactile acuity in normal subjects.  相似文献   

15.
In patients with lesions in the right hemisphere, frequently involving the posterior parietal regions, left-sided somatosensory (and visual and motor) deficits not only reflect a disorder of primary sensory processes, but also have a higher-order component related to a defective spatial representation of the body. This additional factor, related to right brain damage, is clinically relevant: contralesional hemianaesthesia (and hemianopia and hemiplegia) is more frequent in right brain-damaged patients than in patients with damage to the left side of the brain. Three main lines of investigation suggest the existence of this higher-order pathological factor. (i) Right brain-damaged patients with left hemineglect may show physiological evidence of preserved processing of somatosensory stimuli, of which they are not aware. Similar results have been obtained in the visual domain. (ii) Direction-specific vestibular, visual optokinetic and somatosensory or proprioceptive stimulations may displace spatial frames of reference in right brain-damaged patients with left hemineglect, reducing or increasing the extent of the patients'' ipsilesional rightward directional error, and bring about similar directional effects in normal subjects. These stimulations, which may improve or worsen a number of manifestations of the neglect syndrome (such as extrapersonal and personal hemineglect), have similar effects on the severity of left somatosensory deficits (defective detection of tactile stimuli, position sense disorders). However, visuospatial hemineglect and the somatosensory deficits improved by these stimulations are independent, albeit related, disorders. (iii) The severity of left somatosensory deficits is affected by the spatial position of body segments, with reference to the midsagittal plane of the trunk. A general implication of these observations is that spatial (non-somatotopic) levels of representation contribute to corporeal awareness. The neural basis of these spatial frames includes the posterior parietal and the premotor frontal regions. These spatial representations could provide perceptual-premotor interfaces for the organization of movements (e.g. pointing, locomotion) directed towards targets in personal and extrapersonal space. In line with this view, there is evidence that the sensory stimulations that modulate left somatosensory deficits affect left motor disorders in a similar, direction-specific, fashion.  相似文献   

16.
A functional polymorphism (val158met) of the gene coding for Catechol-O-methyltransferase (COM) has been demonstrated to be related to processing of emotional stimuli. Also, this polymorphism has been found to be associated with pain regulation in healthy subjects. Therefore, we investigated a possible influence of this polymorphism on pain processing in healthy persons as well as in subjects with markedly reduced pain sensitivity in the context of Borderline Personality Disorder (BPD). Fifty females (25 patients with BPD and 25 healthy control participants) were included in this study. Genotype had a significant--though moderate--effect on pain sensitivity, but only in healthies. The number of val alleles was correlated with the BOLD response in several pain-processing brain regions, including dorsolateral prefrontal cortex, posterior parietal cortex, lateral globus pallidus, anterior and posterior insula. Within the subgroup of healthy participants, the number of val alleles was positively correlated with the BOLD response in posterior parietal, posterior cingulate, and dorsolateral prefrontal cortex. BPD patients revealed a positive correlation between the number of val alleles and BOLD signal in anterior and posterior insula. Thus, our data show that the val158met polymorphism in the COMT gene contributes significantly to inter-individual differences in neural pain processing: in healthy people, this polymorphism was more related to cognitive aspects of pain processing, whereas BPD patients with reduced pain sensitivity showed an association with activity in brain regions related to affective pain processing.  相似文献   

17.
单侧肢体的外周神经损伤通常导致对侧体感皮层的功能重组. 然而,接受了对侧颈 7 (C7) 外周神经移位手术治疗单侧手臂臂丛全撕脱的病人,在术后早期当其患手被触摸时,只在其健手产生感觉. 在术后晚期,病人才逐渐恢复其患手和健手的正常、独立的功能. 我们在模拟对侧颈 7 (C7) 外周神经移位手术病例的大鼠模型上,用记录体感诱发电位的方法研究了患手和健手的体感代表区. 患手的体感和运动功能由于 C7 神经的再生而逐渐恢复. 术后第 5 个月始, 13 只大鼠患手的体感代表区只出现在其同侧的皮层,同时患手和健手的代表区在该皮层内是高度重叠的 (除掉一个例外),虽然刺激它们产生的体感诱发电位的潜伏期和反应幅度有很大的不同. 结果表明,移位到患手的对侧外周神经能够导致同侧体感皮层动态的功能重组,提示身体另侧感觉输入的介入激发了大脑显著的可塑性.  相似文献   

18.
Modification of the viscerosensory evoked potentials (EPs) were studied during the sleep-wakefulness cycle of the rat. Electrical stimuli of various intensity were delivered either to the mucosal surface of a fistula of the small intestine or to the left splanchnic nerve during wakefulness (W), drowsiness (D), slow-wave-sleep (SWS), and paradoxical sleep (PS). The average EPs were recorded from the somatosensory (SI and SII) and associative (AS) areas of the cortex, the ventrobasal complex of the thalamus (VPL), the posterior hypothalamus (HPT) and the dorsal hippocampus (HPC). The amplitude of each component of the EPs in all explored structures were the largest in SWS and the smallest in W. A phasic increase in amplitude was observed in the EPs recorded immediately before the appearance of the spindles of SWS and during the REM episodes of PS. The peak latencies of the late components were the longest in SWS. These changes of the amplitudes and latencies were greater in the responses to weak stimulation than in EPs to strong ones. The possible synaptic events of the sleep-dependent control of viscerosensory activity are discussed.  相似文献   

19.
Ku Y  Ohara S  Wang L  Lenz FA  Hsiao SS  Bodner M  Hong B  Zhou YD 《PloS one》2007,2(8):e771
Our previous studies on scalp-recorded event-related potentials (ERPs) showed that somatosensory N140 evoked by a tactile vibration in working memory tasks was enhanced when human subjects expected a coming visual stimulus that had been paired with the tactile stimulus. The results suggested that such enhancement represented the cortical activities involved in tactile-visual crossmodal association. In the present study, we further hypothesized that the enhancement represented the neural activities in somatosensory and frontal cortices in the crossmodal association. By applying independent component analysis (ICA) to the ERP data, we found independent components (ICs) located in the medial prefrontal cortex (around the anterior cingulate cortex, ACC) and the primary somatosensory cortex (SI). The activity represented by the IC in SI cortex showed enhancement in expectation of the visual stimulus. Such differential activity thus suggested the participation of SI cortex in the task-related crossmodal association. Further, the coherence analysis and the Granger causality spectral analysis of the ICs showed that SI cortex appeared to cooperate with ACC in attention and perception of the tactile stimulus in crossmodal association. The results of our study support with new evidence an important idea in cortical neurophysiology: higher cognitive operations develop from the modality-specific sensory cortices (in the present study, SI cortex) that are involved in sensation and perception of various stimuli.  相似文献   

20.
Differences in the neural processing of six categories of pictorial stimuli (maps, body parts, objects, animals, famous faces and colours) were investigated using positron emission tomography. Stimuli were presented either with or without the written name of the picture, thereby creating a naming condition and a reading condition. As predicted, naming increased the demands on lexical processes. This was demonstrated by activation of the left temporal lobe in a posterior region associated with name retrieval in several previous studies. This lexical effect was common to all meaningful stimuli and no category-specific effects were observed for naming relative to reading. Nevertheless, category differences were found when naming and reading were considered together. Stimuli with greater visual complexity (animals, faces and maps) enhanced activation in the left extrastriate cortex. Furthermore, map recognition, which requires greater spatio-topographical processing, also activated the right occipito-parietal and parahippocampal cortices. These effects in the visuo-spatial regions emphasize inevitable differences in the perceptual properties of pictorial stimuli. In the semantic temporal regions, famous faces and objects enhanced activation in the left antero-lateral and postero-lateral cortices, respectively. In addition, we showed that the same posterior left temporal region is also activated by body parts. We conclude that category-specific brain activations depend more on differential processing at the perceptual and semantic levels rather than at the lexical retrieval level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号