首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

Although protein-protein interaction networks determined with high-throughput methods are incomplete, they are commonly used to infer the topology of the complete interactome. These partial networks often show a scale-free behavior with only a few proteins having many and the majority having only a few connections. Recently, the possibility was suggested that this scale-free nature may not actually reflect the topology of the complete interactome but could also be due to the error proneness and incompleteness of large-scale experiments.  相似文献   

2.
Currently available protein-protein interaction (PPI) network or 'interactome' maps, obtained with the yeast two-hybrid (Y2H) assay or by co-affinity purification followed by mass spectrometry (co-AP/MS), only cover a fraction of the complete PPI networks. These partial networks display scale-free topologies--most proteins participate in only a few interactions whereas a few proteins have many interaction partners. Here we analyze whether the scale-free topologies of the partial networks obtained from Y2H assays can be used to accurately infer the topology of complete interactomes. We generated four theoretical interaction networks of different topologies (random, exponential, power law, truncated normal). Partial sampling of these networks resulted in sub-networks with topological characteristics that were virtually indistinguishable from those of currently available Y2H-derived partial interactome maps. We conclude that given the current limited coverage levels, the observed scale-free topology of existing interactome maps cannot be confidently extrapolated to complete interactomes.  相似文献   

3.

Background  

Protein-protein interaction networks are commonly sampled using yeast two hybrid approaches. However, whether topological information reaped from these experimentally-measured sub-networks can be extrapolated to complete protein-protein interaction networks is unclear.  相似文献   

4.
We demonstrate that protein–protein interaction networks in several eukaryotic organisms contain significantly more self-interacting proteins than expected if such homodimers randomly appeared in the course of the evolution. We also show that on average homodimers have twice as many interaction partners than non-self-interacting proteins. More specifically, the likelihood of a protein to physically interact with itself was found to be proportional to the total number of its binding partners. These properties of dimers are in agreement with a phenomenological model, in which individual proteins differ from each other by the degree of their ‘stickiness’ or general propensity toward interaction with other proteins including oneself. A duplication of self-interacting proteins creates a pair of paralogous proteins interacting with each other. We show that such pairs occur more frequently than could be explained by pure chance alone. Similar to homodimers, proteins involved in heterodimers with their paralogs on average have twice as many interacting partners than the rest of the network. The likelihood of a pair of paralogous proteins to interact with each other was also shown to decrease with their sequence similarity. This points to the conclusion that most of interactions between paralogs are inherited from ancestral homodimeric proteins, rather than established de novo after duplication. We finally discuss possible implications of our empirical observations from functional and evolutionary standpoints.  相似文献   

5.

Background  

The variation in the sizes of the genomes of distinct life forms remains somewhat puzzling. The organization of proteins into domains and the different mechanisms that regulate gene expression are two factors that potentially increase the capacity of genomes to create more complex systems. High-throughput protein interaction data now make it possible to examine the additional complexity generated by the way that protein interactions are organized.  相似文献   

6.
The advent of the "omics" era in biology research has brought new challenges and requires the development of novel strategies to answer previously intractable questions. Molecular interaction networks provide a framework to visualize cellular processes, but their complexity often makes their interpretation an overwhelming task. The inherently artificial nature of interaction detection methods and the incompleteness of currently available interaction maps call for a careful and well-informed utilization of this valuable data. In this tutorial, we aim to give an overview of the key aspects that any researcher needs to consider when working with molecular interaction data sets and we outline an example for interactome analysis. Using the molecular interaction database IntAct, the software platform Cytoscape, and its plugins BiNGO and clusterMaker, and taking as a starting point a list of proteins identified in a mass spectrometry-based proteomics experiment, we show how to build, visualize, and analyze a protein-protein interaction network.  相似文献   

7.
The scale free structure p(k)-k(-gamma) of protein-protein interaction networks can be reproduced by a static physical model in simulation. We inspect the model theoretically, and find the key reason for the model generating apparent scale free degree distributions. This explanation provides a generic mechanism of 'scale free' networks. Moreover, we predict the dependence of gamma on experimental protein concentrations or other sensitivity factors in detecting interactions, and find experimental evidence to support the prediction.  相似文献   

8.
9.

Background  

In recent years, a considerable amount of research effort has been directed to the analysis of biological networks with the availability of genome-scale networks of genes and/or proteins of an increasing number of organisms. A protein-protein interaction (PPI) network is a particular biological network which represents physical interactions between pairs of proteins of an organism. Major research on PPI networks has focused on understanding the topological organization of PPI networks, evolution of PPI networks and identification of conserved subnetworks across different species, discovery of modules of interaction, use of PPI networks for functional annotation of uncharacterized proteins, and improvement of the accuracy of currently available networks.  相似文献   

10.
The systematic characterization of the whole interactomes of different model organisms has revealed that the eukaryotic proteome is highly interconnected. Therefore, biological research is progressively shifting away from classical approaches that focus only on a few proteins toward whole protein interaction networks to describe the relationship of proteins in biological processes. In this minireview, we survey the most common methods for the systematic identification of protein interactions and exemplify different strategies for the generation of protein interaction networks. In particular, we will focus on the recent development of protein interaction networks derived from quantitative proteomics data sets.  相似文献   

11.
MOTIVATION: Recent screening techniques have made large amounts of protein-protein interaction data available, from which biologically important information such as the function of uncharacterized proteins, the existence of novel protein complexes, and novel signal-transduction pathways can be discovered. However, experimental data on protein interactions contain many false positives, making these discoveries difficult. Therefore computational methods of assessing the reliability of each candidate protein-protein interaction are urgently needed. RESULTS: We developed a new 'interaction generality' measure (IG2) to assess the reliability of protein-protein interactions using only the topological properties of their interaction-network structure. Using yeast protein-protein interaction data, we showed that reliable protein-protein interactions had significantly lower IG2 values than less-reliable interactions, suggesting that IG2 values can be used to evaluate and filter interaction data to enable the construction of reliable protein-protein interaction networks.  相似文献   

12.
Itzhaki Z 《PloS one》2011,6(7):e21724
Protein-domains play an important role in mediating protein-protein interactions. Furthermore, the same domain-pairs mediate different interactions in different contexts and in various organisms, and therefore domain-pairs are considered as the building blocks of interactome networks. Here we extend these principles to the host-virus interface and find the domain-pairs that potentially mediate human-herpesvirus interactions. Notably, we find that the same domain-pairs used by other organisms for mediating their interactions underlie statistically significant fractions of human-virus protein inter-interaction networks. Our analysis shows that viral domains tend to interact with human domains that are hubs in the human domain-domain interaction network. This may enable the virus to easily interfere with a variety of mechanisms and processes involving various and different human proteins carrying the relevant hub domain. Comparative genomics analysis provides hints at a molecular mechanism by which the virus acquired some of its interacting domains from its human host.  相似文献   

13.
Alternative splicing plays a key role in the expansion of proteomic and regulatory complexity, yet the functions of the vast majority of differentially spliced exons are not known. In this study, we observe that brain and other tissue-regulated exons are significantly enriched in flexible regions of proteins that likely form conserved interaction surfaces. These proteins participate in significantly more interactions in protein-protein interaction (PPI) networks than other proteins. Using LUMIER, an automated PPI assay, we observe that approximately one-third of analyzed neural-regulated exons affect PPIs. Inclusion of these exons stimulated and repressed different partner interactions at comparable frequencies. This assay further revealed functions of individual exons, including a role for a neural-specific exon in promoting an interaction between Bridging Integrator 1 (Bin1)/Amphiphysin II and Dynamin 2 (Dnm2) that facilitates endocytosis. Collectively, our results provide evidence that regulated alternative exons frequently remodel interactions to establish tissue-dependent PPI networks.  相似文献   

14.
Proteins carry out their functions by interacting with other proteins and small molecules, forming a complex interaction network. In this review, we briefly introduce classical graph theory based protein-protein interaction networks. We also describe the commonly used experimental methods to construct these networks, and the insights that can be gained from these networks. We then discuss the recent transition from graph theory based networks to structure based protein-protein interaction networks and the advantages of the latter over the former, using two networks as examples. We further discuss the usefulness of structure based protein-protein interaction networks for drug discovery, with a special emphasis on drug repositioning.  相似文献   

15.
Goel A  Li SS  Wilkins MR 《Proteomics》2011,11(13):2672-2682
Protein-protein interaction networks are typically built with interactions collated from many experiments. These networks are thus composite and show all interactions that are currently known to occur in a cell. However, these representations are static and ignore the constant changes in protein-protein interactions. Here we present software for the generation and analysis of dynamic, four-dimensional (4-D) protein interaction networks. In this, time-course-derived abundance data are mapped onto three-dimensional networks to generate network movies. These networks can be navigated, manipulated and queried in real time. Two types of dynamic networks can be generated: a 4-D network that maps expression data onto protein nodes and one that employs 'real-time rendering' by which protein nodes and their interactions appear and disappear in association with temporal changes in expression data. We illustrate the utility of this software by the analysis of singlish interface date hub interactions during the yeast cell cycle. In this, we show that proteins MLC1 and YPT52 show strict temporal control of when their interaction partners are expressed. Since these proteins have one and two interaction interfaces, respectively, it suggests that temporal control of gene expression may be used to limit competition at the interaction interfaces of some hub proteins. The software and movies of the 4-D networks are available at http://www.systemsbiology.org.au/downloads_geomi.html.  相似文献   

16.
17.
An ensemble framework for clustering protein-protein interaction networks   总被引:3,自引:0,他引:3  
MOTIVATION: Protein-Protein Interaction (PPI) networks are believed to be important sources of information related to biological processes and complex metabolic functions of the cell. The presence of biologically relevant functional modules in these networks has been theorized by many researchers. However, the application of traditional clustering algorithms for extracting these modules has not been successful, largely due to the presence of noisy false positive interactions as well as specific topological challenges in the network. RESULTS: In this article, we propose an ensemble clustering framework to address this problem. For base clustering, we introduce two topology-based distance metrics to counteract the effects of noise. We develop a PCA-based consensus clustering technique, designed to reduce the dimensionality of the consensus problem and yield informative clusters. We also develop a soft consensus clustering variant to assign multifaceted proteins to multiple functional groups. We conduct an empirical evaluation of different consensus techniques using topology-based, information theoretic and domain-specific validation metrics and show that our approaches can provide significant benefits over other state-of-the-art approaches. Our analysis of the consensus clusters obtained demonstrates that ensemble clustering can (a) produce improved biologically significant functional groupings; and (b) facilitate soft clustering by discovering multiple functional associations for proteins. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

18.
Global protein function prediction from protein-protein interaction networks   总被引:20,自引:0,他引:20  
Determining protein function is one of the most challenging problems of the post-genomic era. The availability of entire genome sequences and of high-throughput capabilities to determine gene coexpression patterns has shifted the research focus from the study of single proteins or small complexes to that of the entire proteome. In this context, the search for reliable methods for assigning protein function is of primary importance. There are various approaches available for deducing the function of proteins of unknown function using information derived from sequence similarity or clustering patterns of co-regulated genes, phylogenetic profiles, protein-protein interactions (refs. 5-8 and Samanta, M.P. and Liang, S., unpublished data), and protein complexes. Here we propose the assignment of proteins to functional classes on the basis of their network of physical interactions as determined by minimizing the number of protein interactions among different functional categories. Function assignment is proteome-wide and is determined by the global connectivity pattern of the protein network. The approach results in multiple functional assignments, a consequence of the existence of multiple equivalent solutions. We apply the method to analyze the yeast Saccharomyces cerevisiae protein-protein interaction network. The robustness of the approach is tested in a system containing a high percentage of unclassified proteins and also in cases of deletion and insertion of specific protein interactions.  相似文献   

19.
We introduce clustering with overlapping neighborhood expansion (ClusterONE), a method for detecting potentially overlapping protein complexes from protein-protein interaction data. ClusterONE-derived complexes for several yeast data sets showed better correspondence with reference complexes in the Munich Information Center for Protein Sequence (MIPS) catalog and complexes derived from the Saccharomyces Genome Database (SGD) than the results of seven popular methods. The results also showed a high extent of functional homogeneity.  相似文献   

20.
Protein-protein interaction (PPI) prediction is a central task in achieving a better understanding of cellular and intracellular processes. Because high-throughput experimental methods are both expensive and time-consuming, and are also known of suffering from the problems of incompleteness and noise, many computational methods have been developed, with varied degrees of success. However, the inference of PPI network from multiple heterogeneous data sources remains a great challenge. In this work, we developed a novel method based on approximate Bayesian computation and modified differential evolution sampling (ABC-DEP) and regularized laplacian (RL) kernel. The method enables inference of PPI networks from topological properties and multiple heterogeneous features including gene expression and Pfam domain profiles, in forms of weighted kernels. The optimal weights are obtained by ABC-DEP, and the kernel fusion built based on optimal weights serves as input to RL to infer missing or new edges in the PPI network. Detailed comparisons with control methods have been made, and the results show that the accuracy of PPI prediction measured by AUC is increased by up to 23 %, as compared to a baseline without using optimal weights. The method can provide insights into the relations between PPIs and various feature kernels and demonstrates strong capability of predicting faraway interactions that cannot be well detected by traditional RL method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号