首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The extent to which the diurnal fluctuations of different cognitive processes could be affected by sleep loss may be explored to predict performance decrements observed in the real world. Twenty healthy male subjects voluntarily took part in 8 test sessions at 06:00, 10:00, 14:00, and 18:00 h, following either a night with or without sleep in random order. Measurements included oral temperature, simple reaction time, sign cancelation, Go/NoGo, and the Purdue pegboard test. The results indicate that simple reaction time and motor coordination had morning–afternoon variations closely following the rhythms of temperature and vigilance. Inhibitory attention (Go/NoGo) presented no morning–afternoon variations. Sleep deprivation may affect the profiles of cognitive performance depending on the processes solicited. Sustained and inhibitory attention are particularly affected in the morning (after 24 and 28 waking hours), while a complex task (visuo-motor coordination) would be affected after 32 waking hours only.  相似文献   

2.
[Purpose]We determined the effect of partial sleep deprivation (PSD) after an exercise session on exercise performance on the following morning.[Methods]Eleven male athletes performed either a normal sleep trial (CON) or a PSD trial. On the first day (day 1), all subjects performed an exercise session consisting of 90 min of running (at 75% V˙O2max) followed by 100 drop jumps. Maximal strength (MVC) was evaluated before and after exercise. In the CON trial, the sleep duration was 23:00–7:00, while in the PSD trial, the sleep duration was shortened to 40% of the regular sleep duration. On the following morning (day 2), MVC, the metabolic responses during 20 min of running (at 75% V˙O2max), and time to exhaustion (TTE) at 85% V˙O2max were evaluated.[Results]On day 2, neither the MVC nor  V˙O2 during 20 min of running differed significantly between the two trials. However, the respiratory exchange ratio was significantly lower in the PSD trial than in the CON trial (p = 0.01). Moreover, the TTE was significantly shorter in the PSD trial than in the CON trial (p = 0.01).[Conclusion]A single night of PSD after an exercise session significantly decreased endurance performance without significantly changing muscle strength or cardiopulmonary response.  相似文献   

3.
Sleep and Biological Rhythms - Sleep deprivation is common among university students, and has been associated with poor academic performance and physical dysfunction. However, current literature...  相似文献   

4.
S E File  S Day 《Animal behaviour》1972,20(4):758-762
  相似文献   

5.
Lu JQ  Liu WF  Tang CF 《中国应用生理学杂志》2011,27(3):361-2, 371, 383
目的:探索睡眠剥夺对大鼠运动能力及谷氨酰胺含量变化的影响,为睡眠剥夺后的运动训练等提供一定的实验依据。方法:将30只雄性SD大鼠按体重随机分安静对照组、0h睡眠剥夺力竭运动组(SDE)、24h SDE、48h SDE和72h SDE组(n=6),采用轻柔刺激法建立睡眠剥夺模型和依据Bedford建立的大鼠运动模型。结果:24h SDE睡眠剥夺组与0h SDE组比较。大鼠后蹬跑时间明显长(P〈0.05),48h SDE睡眠剥夺组和72h SDE睡眠剥夺与0h SDE睡眠剥夺组比较,后蹬跑时间显著性减少(P〈0.01);24h SDE睡眠剥夺组与c组比较大鼠胸腺谷氨酰胺含量显著升高(P〈0.05),48h SDE睡眠剥夺组和72h SDE睡眠剥夺组与C组比较大鼠胸腺谷氨酰胺含量降低(P〈0.01);睡眠剥夺组与C组比较,血清谷氨酰胺含量的变化均具有高度显著性差异(P〈0.01),睡眠剥夺24h后血清谷氨酰胺含量显著增多,却在睡眠剥夺48h、72h后血清谷氨酰胺含量明显下降。结论:①睡眠剥夺24h能提高大鼠运动能力,睡眠剥夺48h甚至是72h后大鼠运动能力开始降低。②睡眠剥夺24h后大鼠胸腺谷氨酰胺含量和血清谷氨酰胺含量升高,而睡眠剥夺48h后大鼠胸腺和血清的谷氨酰胺含量下降明显,睡眠剥夺72h后胸腺和血清谷氨酰胺含量显著性降低。  相似文献   

6.
Effects of sleep deprivation on human immune functions   总被引:11,自引:0,他引:11  
The effect of 40 h of wakefulness on a variety of immunological parameters in the peripheral blood from 10 normal male subjects was studied. Sleep deprivation led to enhanced nocturnal plasma interleukin 1-like and interleukin 2-like activities. The rise in nocturnal response of lymphocytes to pokeweed mitogen stimulation during a normal 24 h sleep-wake cycle was delayed by sleep deprivation, but the response to the phytohemagglutinin mitogen was unaffected. With resumed nocturnal sleep, there was a prolonged decline in natural killer cell activity (measured as spontaneous cytolytic activity for human tumor cells) and return of an increased response to pokeweed mitogen. The altered patterns in immune functions occurred independently of the cortisol circadian rhythm, which remained unchanged.  相似文献   

7.
The changes in cardiac and ventilatory responses were measured in 7 endurance athletes during physical exercise on a bicycle ergometer, taking place after a control night and after a night with partial sleep deprivation in the middle of the night. The results show that, despite the maximal work load was not modified with control, heart rate, ventilation and VE/VO2 ratio (ERO2) were greater at the submaximal (75% of the VO2 max) and maximal work load and oxygen consumption decreased at maximal work, after the night of partial sleep deprivation as compared to the control. These findings suggest that acute sleep loss may contribute to alter the endurance performance by impairment of aerobic pathways.  相似文献   

8.
This study was designed to determine the effects of sleep deprivation on respiratory events during sleep in healthy infants. Ten unsedated full-term infants (1-6 mo) were monitored polygraphically during "afternoon naps" on a control day and on the day after sleep deprivation. Respiratory events, i.e., central apnea, obstructive apnea and hypopnea, and periodic breathing were tabulated. Results for respiratory events were expressed as 1) indexes of the total number of respiratory events and of specific respiratory events per hour of total sleep (TST), "quiet" sleep (QS) and "active" sleep (AS) times; 2) total duration of total and specific respiratory events, expressed as a percentage of TST, QS, and AS times. After sleep deprivation, significant increases were observed for 1) respiratory event (P less than 0.001), central apnea (P less than 0.05), and obstructive respiratory event (P less than 0.01) indexes; 2) respiratory event time as a percentage of TST (P less than 0.002) and as a percentage of AS time (P less than 0.001); 3) obstructive respiratory event time as a percentage of TST (P less than 0.01), QS (P less than 0.05), and AS times (P less than 0.002). The present study shows that short-term sleep deprivation in healthy infants increases the number and timing of respiratory events, especially obstructive events in AS.  相似文献   

9.
Sleep enhances memory consolidation. Bearing in mind that food intake produces many metabolic signals that can influence memory processing in humans (e.g., insulin), the present study addressed the question as to whether the enhancing effect of sleep on memory consolidation is affected by the amount of energy consumed during the preceding daytime. Compared to sleep, nocturnal wakefulness has been shown to impair memory consolidation in humans. Thus, a second question was to examine whether the impaired memory consolidation associated with sleep deprivation (SD) could be compensated by increased daytime energy consumption. To these aims, 14 healthy normal-weight men learned a finger tapping sequence (procedural memory) and a list of semantically associated word pairs (declarative memory). After the learning period, standardized meals were administered, equaling either ~50% or ~150% of the estimated daily energy expenditure. In the morning, after sleep or wakefulness, memory consolidation was tested. Plasma glucose was measured both before learning and retrieval. Polysomnographic sleep recordings were performed by electroencephalography (EEG). Independent of energy intake, subjects recalled significantly more word pairs after sleep than they did after SD. When subjects stayed awake and received an energy oversupply, the number of correctly recalled finger sequences was equal to those seen after sleep. Plasma glucose did not differ among conditions, and sleep time in the sleep conditions was not influenced by the energy intake interventions. These data indicate that the daytime energy intake level affects neither sleep's capacity to boost the consolidation of declarative and procedural memories, nor sleep's quality. However, high energy intake was followed by an improved procedural but not declarative memory consolidation under conditions of SD. This suggests that the formation of procedural memory is not only triggered by sleep but is also sensitive to the fluctuations in the energy state of the body.  相似文献   

10.
Xu  Xiaowen  Wang  Liang  Zhang  Yan  Su  Tianjiao  Chen  Liying  Zhang  Yan  Ma  Weifeng  Xie  Yuanyuan  Wang  Tiantian  Yang  Fan  He  Li  Wang  Wenjiao  Fu  Xuemei  Hao  Hongxia  Ma  Yuanzheng 《Sleep and biological rhythms》2016,14(4):321-328
Sleep and Biological Rhythms - Epidemiological studies have shown that chronic sleep disturbances resulted in metabolic disorders. The purpose of this study was to assess the relationship between...  相似文献   

11.
To assess the effects of selective sleep loss on ventilation during recovery sleep, we deprived 10 healthy young adult humans of rapid-eye-movement (REM) sleep for 48 h and compared ventilation measured during the recovery night with that measured during the baseline night. At a later date we repeated the study using awakenings during non-rapid-eye-movement (NREM) sleep at the same frequency as in REM sleep deprivation. Neither intervention produced significant changes in average minute ventilation during presleep wakefulness, NREM sleep, or the first REM sleep period. By contrast, both interventions resulted in an increased frequency of breaths, in which ventilation was reduced below the range for tonic REM sleep, and in an increased number of longer episodes, in which ventilation was reduced during the first REM sleep period on the recovery night. The changes after REM sleep deprivation were largely due to an increase in the duration of the REM sleep period with an increase in the total phasic activity and, to a lesser extent, to changes in the relationship between ventilatory components and phasic eye movements. The changes in ventilation after partial NREM sleep deprivation were associated with more pronounced changes in the relationship between specific ventilatory components and eye movement density, whereas no change was observed in the composition of the first REM sleep period. These findings demonstrate that sleep deprivation leads to changes in ventilation during subsequent REM sleep.  相似文献   

12.
48 h睡眠剥夺对正常人双重任务能力和疲劳感的影响   总被引:1,自引:0,他引:1  
Li YF  Zhan H  Li T 《中国应用生理学杂志》2005,21(2):174-175,191
目的:观察48 h睡眠剥夺(SD)对正常人双重任务能力和疲劳感的影响.方法:观察6名男性青年志愿者在48 h SD条件下,单、双重任务操作能力、临界闪光融合频率(CFF)、主观瞌睡度和疲劳感的变化.结果:与基础值相比,单、双重任务成绩、CFF随SD时问延长而呈下降趋势,SSS分值和RPE分值相应升高.结论:48 h SD条件损害正常人双重任务能力并加重疲劳感,SD时间较长和复合生理节律低谷时操纵能力下降尤其明显.  相似文献   

13.
We studied the effects of marked sleep deprivation on the EEG patterns and performance of a physically fit man (age 26) on the occasion of the world record continuous marathon tennis play (147 hours, 20 minutes). Before and immediately after the marathon, the sleep patterns of the player were recorded in our laboratory. After playing for 40 and 80 hours and within 24 hours, the performance changes were evaluated each hour. Amounts of the different sleep stages during the first recovery night compared with those of the baseline indicate an increase of 56% for total sleep time, 54% for stages 1 and 2, 154% for stages 3 and 4 and 20% for REM sleep. During the second recovery night, only REM sleep showed an increase. Activity index showed a marked decrease after 80 hours of sleep deprivation compared with that after 40 hours and was dramatically worsened during nighttime. The number of faults and pauses was also increased after 80 hours, suggesting a clear performance deterioration. Our results confirmed the effects of sleep deprivation on the recovery and performance deterioration.  相似文献   

14.
15.
16.
17.
Ratings of subjective sleepiness are often used in laboratory and field studies of sleep loss and shifted sleep hours. Some studies suggest that such ratings might fail to reflect sleepiness as shown in physiology or performance. One reason for this may be the influence of the context of the rating. Social interaction or physical activity may mask latent sleepiness. The present study attempted to approach this question. Nine subjects participated in a partial sleep-deprivation experiment (five days of 4 h of time in bed [TIB]), preceded by two baseline days (8 h TIB) and followed by three recovery days (8 h TIB). Sleepiness was self-rated on the Karolinska Sleepiness Scale (KSS; scores of 1-9) after a period of relaxation, after a reaction-time test, and after 30 min of free activities. The results showed a strong increase in subjective sleepiness during sleep restriction and a significant difference between conditions. Free activity reduced the self-rated subjective sleepiness by 1.1 KSS units compared to the level of sleepiness self-rated at the end of the reaction-time test. Thus, the results of this study indicate that the context of a sleepiness rating affects the outcome of the rating.  相似文献   

18.
19.
Nathaniel Kleitman was the first to observe that sleep deprivation in humans did not eliminate the ability to perform neurobehavioral functions, but it did make it difficult to maintain stable performance for more than a few minutes. To investigate variability in performance as a function of sleep deprivation, n = 13 subjects were tested every 2 hours on a 10-minute, sustained-attention, psychomotor vigilance task (PVT) throughout 88 hours of total sleep deprivation (TSD condition), and compared to a control group of n = 15 subjects who were permitted a 2-hour nap every 12 hours (NAP condition) throughout the 88-hour period. PVT reaction time means and standard deviations increased markedly among subjects and within each individual subject in the TSD condition relative to the NAP condition. TSD subjects also had increasingly greater performance variability as a function of time on task after 18 hours of wakefulness. During sleep deprivation, variability in PVT performance reflected a combination of normal timely responses, errors of omission (i.e., lapses), and errors of commission (i.e., responding when no stimulus was present). Errors of omission and errors of commission were highly intercorrelated across deprivation in the TSD condition (r = 0.85, p = 0.0001), suggesting that performance instability is more likely to include compensatory effort than a lack of motivation. The marked increases in PVT performance variability as sleep loss continued supports the "state instability" hypothesis, which posits that performance during sleep deprivation is increasingly variable due to the influence of sleep initiating mechanisms on the endogenous capacity to maintain attention and alertness, thereby creating an unstable state that fluctuates within seconds and that cannot be characterized as either fully awake or asleep.  相似文献   

20.
To characterize ventilatory responses to bronchoconstriction during sleep and to assess the effect of prior sleep deprivation on ventilatory and arousal responses to bronchoconstriction, bronchoconstriction was induced in eight asthmatic subjects while they were awake, during normal sleep, and during sleep after a 36-h period of sleep deprivation. Each subject was bronchoconstricted with increasing concentrations of aerosolized methacholine while ventilatory patterns and lower airway resistance (Rla) were continually monitored. The asthmatic patients maintained their minute ventilation as Rla increased under all conditions, demonstrating a stable tidal volume with a mild increase in respiratory frequency. Inspiratory drive, as measured by occlusion pressure (P0.1), increased progressively and significantly as Rla increased under all conditions (slopes of P0.1 vs. Rla = 0.249, 0.112, and 0.154 for awake, normal sleep, and sleep after sleep deprivation, respectively, P less than 0.0006). Chemostimuli did not appear to contribute significantly to the observed increases in P0.1. Prior sleep deprivation had no effect on ventilatory and P0.1 responses to bronchoconstriction but did significantly raise the arousal threshold to induced bronchoconstriction. We conclude that ventilatory responses to bronchoconstriction, unlike extrinsic loading, are not imparied by the presence of sleep, nor are they chemically mediated. However, prior sleep deprivation does increase the subsequent arousal threshold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号