首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In the present study the effect of high glucose concentrations, insulin, PPARγ activators (rosiglitazone) and NHE-1 inhibitors (cariporide) in atherosclerosis-related functions of human monocytes was investigated. Monocyte adhesion to laminin-1, collagen type IV and endothelial cells, as well as monocyte migration through the same substrates were studied. Incubation of the monocyte suspension with high glucose concentrations, insulin and rosiglitazone induced all the studied atherosclerosis-related functions of the monocytes. In all these functions the addition of cariporide counteracted the activity of glucose, insulin and rosiglitazone. The use of antigen for β1 integrin also counteracted the activity of the above in monocyte adhesion in all three substrates. The data of the present study suggests that PPARγ activation in monocytes induces atherosclerosis, and that NHE-1 and β1 integrin play an important role in the beginning of atherosclerosis. p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px 'Lucida Grande'}  相似文献   

2.
Fatty acid binding protein 4 (FABP4) is a novel tumor regulator that is abnormally expressed in many human cancers. In our study, upregulated microRNA-211 (miR-211) and reduced FABP4 expression were detected in colorectal cancer (CRC) patients and CRC cells. Mimic miR-211 or anti-miR-211 were transfected to investigate the effects of miR-211 on SW480 cells. The results showed that miR-211 promoted but anti-miR-211 inhibited cell migration, invasion, and epithelial–mesenchymal transition (EMT) of SW480 cells. Luciferase activity was decreased after cotransfection with miR-211 and WT-FABP4-UTR in SW480 cells. And reduced FABP4 protein expression by miR-211 indicated that FABP4 was the targeted gene of miR-211. miR-211 inhibited the activation of peroxisome proliferator-activated receptor (PPAR) γ, whereas overexpression of FABP4 reversed that effect. Finally, FABP4 inhibited the migration, invasion, and EMT of SW480 cells, whereas PPARγ agonist reversed the effects of FABP4. Thus, the miR-211/FABP4/PPARγ axis may be a novel target for CRC therapy.  相似文献   

3.
Li GB  Li J  Zeng YJ  Zhong D  Wu GZ  Fu XH  He FT  Dai SS 《生理学报》2011,63(1):62-68
TGFβ/smad pathway is recognized as an important signal pathway to promote the pathogenesis of atherosclerosis (AS). Peroxisome proliferator-activated receptor γ (PPARγ) activation is considered to be important in modulating AS. Herein, we investigated the regulation of PPARγ on c-Ski, the repressor of TGFβ/smad pathway, in rat AS model and cultured vascular smooth muscle cells (VSMCs). c-Ski mRNA and protein expression were detected by real-time PCR and Western blot, respectively, in vivo and in vitro with treatment of PPARγ agonist rosiglitazone and antagonist GW9662. The proliferation and collagen secretion of VSMCs after c-Ski transfection were investigated. The underlying mechanism was further investigated by online program NUBIScan and luciferase reporter gene analysis. Results showed that both mRNA and protein expressions of c-Ski in the AS lesions was down-regulated in vivo, while in cultured VSMCs, c-Ski transfection significantly suppressed the proliferation and collagen secretion of rat VSMCs. Rosiglitazone significantly up-regulated mRNA and protein levels of c-Ski in VSMCs, which could be blocked by GW9662. Online NUBIScan analysis suggested possible PPARγ binding sites in the promoter region of c-Ski. In addition, luciferase activity of c-Ski reporter gene was also increased obviously in the presence of rosiglitazone. These results indicate that c-Ski is one of the newly found target genes of PPARγ and thus involved in the anti-AS effect of PPARγ.  相似文献   

4.
5.
Endothelial-monocyte interactions are regulated by adhesion molecules and key in the development of vascular inflammatory disease. Peroxisome proliferator-activated receptor (PPAR) γ activation in endothelial cells is recognized to mediate anti-inflammatory effects that inhibit monocyte rolling and adhesion. Herein, evidence is provided for a novel mechanism for the anti-inflammatory effects of PPARγ ligand action that involves inhibition of proinflammatory cytokine-dependent up-regulation of endothelial N-glycans. TNFα treatment of human umbilical vein endothelial cells increased surface expression of high mannose/hybrid N-glycans. A role for these sugars in mediating THP-1 or primary human monocyte rolling and adhesion was indicated by competition studies in which addition of α-methylmannose, but not α-methylglucose, inhibited monocyte rolling and adhesion during flow, but not under static conditions. This result supports the notion that adhesion molecules provide scaffolds for sugar epitopes to mediate adhesion with cognate receptors. A panel of structurally distinct PPARγ agonists all decreased TNFα-dependent expression of endothelial high mannose/hybrid N-glycans. Using rosiglitazone as a model PPARγ agonist, which decreased TNFα-induced high mannose N-glycan expression, we demonstrate a role for these carbohydrate residues in THP-1 rolling and adhesion that is independent of endothelial surface adhesion molecule expression (ICAM-1 and E-selectin). Data from N-glycan processing gene arrays identified α-mannosidases (MAN1A2 and MAN1C1) as targets for down-regulation by TNFα, which was reversed by rosiglitazone, a result consistent with altered high mannose/hybrid N-glycan epitopes. Taken together we propose a novel anti-inflammatory mechanism of endothelial PPARγ activation that involves targeting protein post-translational modification of adhesion molecules, specifically N-glycosylation.  相似文献   

6.
7.
The thiazolidedione (TZD) class of drugs is clinically approved for the treatment of type 2 diabetes. The therapeutic actions of TZDs are mediated via activation of peroxisome proliferator-activated receptor γ (PPARγ). Despite their widespread use, concern exists regarding the safety of currently used TZDs. This has prompted the development of selective PPARγ modulators (SPPARMs), compounds that promote glucose homeostasis but with reduced side effects due to partial PPARγ agonism. However, this also results in partial agonism with respect to PPARγ target genes promoting glucose homeostasis. Using a gene expression-based screening approach we identified N-acetylfarnesylcysteine (AFC) as both a full and partial agonist depending on the PPARγ target gene (differential SPPARM). AFC activated PPARγ as effectively as rosiglitazone with regard to Adrp, Angptl4, and AdipoQ, but was a partial agonist of aP2, a PPARγ target gene associated with increased adiposity. Induction of adipogenesis by AFC was also attenuated compared with rosiglitazone. Reporter, ligand binding assays, and dynamic modeling demonstrate that AFC binds and activates PPARγ in a unique manner compared with other PPARγ ligands. Importantly, treatment of mice with AFC improved glucose tolerance similar to rosiglitazone, but AFC did not promote weight gain to the same extent. Finally, AFC had effects on adipose tissue remodeling similar to those of rosiglitazone and had enhanced antiinflammatory effects. In conclusion, we describe a new approach for the identification of differential SPPARMs and have identified AFC as a novel class of PPARγ ligand with both full and partial agonist activity in vitro and in vivo.  相似文献   

8.
Peritoneal carcinomatosis involves a series of events including tumor cell interactions with mesothelial cells and the extracellular matrix (ECM). We have studied the adhesive and invasive properties of four human colorectal carcinoma cell lines (Co115, HT29, SW480, SW620) confronted in vitro with a human mesothelial cell monolayer or with the ECM proteins collagen IV, laminin-1, fibronectin, tenascin-C and vitronectin. Quantitation was achieved following staining of tumor cells with the calcein-AM fluorescent dye. We found that all four cell lines rapidly adhered to a mesothelial cell monolayer. This adhesion event was not inhibitable by anti-integrin and anti-CD44 antibodies. Following initial attachment, the SW480 and SW620 cells invaded the mesothelial cell monolayer more aggressively than HT29 and Col 15 cells. All cell lines adhered to ECM proteins with each one exhibiting an individual adhesion pattern. Adhesion to matrix was completely integrin-dependent. When tested in an invasion assay, HT29 and Co115 cells crossed Matrigel-coated filters while SW480 and SW620 cells did not. This invasion was inhibited by anti-β1 integrin antibodies. Taken together, our results demonstrate that the initial colorectal tumor cell—mesothelial cell interaction occurs through an integrin-independent mechanism while adhesion to matrix proteins and invasion through Matrigel are integrin-dependent events. Furthermore, the different invasive capacity of SW480 and SW620 versus HT29 and Co115 cells upon interaction with a mesothelial cell monolayer or Matrigel suggests that these two invasion events may be mediated by distinct mechanisms.  相似文献   

9.
Peritoneal carcinomatosis involves a series of events including tumor cell interactions with mesothelial cells and the extracellular matrix (ECM). We have studied the adhesive and invasive properties of four human colorectal carcinoma cell lines (Co115, HT29, SW480, SW620) confronted in vitro with a human mesothelial cell monolayer or with the ECM proteins collagen IV, laminin-1, fibronectin, tenascin-C and vitronectin. Quantitation was achieved following staining of tumor cells with the calcein-AM fluorescent dye. We found that all four cell lines rapidly adhered to a mesothelial cell monolayer. This adhesion event was not inhibitable by anti-integrin and anti-CD44 antibodies. Following initial attachment, the SW480 and SW620 cells invaded the mesothelial cell monolayer more aggressively than HT29 and Col 15 cells. All cell lines adhered to ECM proteins with each one exhibiting an individual adhesion pattern. Adhesion to matrix was completely integrin-dependent. When tested in an invasion assay, HT29 and Co115 cells crossed Matrigel-coated filters while SW480 and SW620 cells did not. This invasion was inhibited by anti-β1 integrin antibodies. Taken together, our results demonstrate that the initial colorectal tumor cell—mesothelial cell interaction occurs through an integrin-independent mechanism while adhesion to matrix proteins and invasion through Matrigel are integrin-dependent events. Furthermore, the different invasive capacity of SW480 and SW620 versus HT29 and Co115 cells upon interaction with a mesothelial cell monolayer or Matrigel suggests that these two invasion events may be mediated by distinct mechanisms.  相似文献   

10.
Activation of peroxisome proliferator-activated receptor γ (PPARγ) by ligands is associated with beneficial health effects, including anti-inflammatory and insulin-sensitizing effects. The aim of the current study was to develop luciferase reporter gene assays to enable fast and low-cost measurement of PPARγ agonist and antagonist activity. Two reporter gene assays, PPARγ1 CALUX and PPARγ2 CALUX, were developed by stable transfection of U2OS cells with an expression vector for PPARγ1 or PPARγ2 and a pGL3–3xPPRE–tata-luc or pGL4–3xPPRE–tata-luc reporter construct, respectively. PPARγ1 CALUX and PPARγ2 CALUX cells showed similar concentration-dependent luciferase induction upon exposure to the PPARγ agonists rosiglitazone, troglitazone, pioglitazone, ciglitazone, netoglitazone, and 15-deoxy-Δ12,14-prostaglandin J2. The potency to induce luciferase decreased in the following order: rosiglitazone > troglitazone = pioglitazone > netoglitazone > ciglitazone. A concentration-dependent decrease in the response to 50 nM rosiglitazone was observed on the addition of PPARγ antagonist GW9662 or T0070907 in both PPARγ1 CALUX and PPARγ2 CALUX cells. The PPARα agonists WY14643 and fenofibrate failed to induce luciferase activity, confirming the specificity of these cell lines for PPARγ agonists. In conclusion, PPARγ1 CALUX and PPARγ2 CALUX cells provide a reliable and useful tool to screen (bio)chemicals for PPARγ agonist or antagonist activity.  相似文献   

11.
Follistatin (FST) and activin A as gonadal proteins exhibit opposite effects on follicle-stimulating hormone (FSH) release from pituitary gland, and activin A-FST system is involved in regulation of decidualization in reproductive biology. However, the roles of FST and activin A in migration of decidualized endometrial stromal cells are not well characterized. In this study, transwell chambers and microfluidic devices were used to assess the effects of FST and activin A on migration of decidualized mouse endometrial stromal cells (d-MESCs). We found that compared with activin A, FST exerted more significant effects on adhesion, wound healing and migration of d-MESCs. Similar results were also seen in the primary cultured decidual stromal cells (DSCs) from uterus of pregnant mouse. Simultaneously, the results revealed that FST increased calcium influx and upregulated the expression levels of the migration-related proteins MMP9 and Ezrin in d-MESCs. In addition, FST increased the level of phosphorylation of JNK in d-MESCs, and JNK inhibitor AS601245 significantly attenuated FST action on inducing migration of d-MESCs. These data suggest that FST, not activin A in activin A-FST system, is a crucial chemoattractant for migration of d-MESCs by JNK signalling to facilitate the successful uterine decidualization and tissue remodelling during pregnancy.  相似文献   

12.
13.
Thiazolidinedione (TZD) compounds targeting the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) demonstrate unique benefits for the treatment of insulin resistance and type II diabetes. TZDs include rosiglitazone, pioglitazone and rivoglitazone, with the latter being the most potent. The TZDs are only marginally selective for the therapeutic target PPARγ as they also activate PPARα and PPARδ homologues to varying degrees, causing off-target effects. While crystal structures for TZD compounds in complex with PPARγ are available, minimal structural information is available for TZDs bound to PPARα and PPARδ. This paucity of structural information has hampered the determination of precise structural mechanisms involved in TZD selectivity between PPARs. To help address these questions molecular dynamic simulations were performed of rosiglitazone, pioglitazone and rivoglitazone in complex with PPARα, PPARδ, and PPARγ in order to better understand the mechanisms of PPAR selectivity. The simulations revealed that TZD interactions with residues Tyr314 and Phe318 of PPARα and residues Phe291 and Thr253 of PPARδ as well as the omega loop, are key determinants of TZD receptor selectivity. Notably, in this study, we solve the first X-ray crystal structure of rivoglitazone bound to any PPAR. Rivoglitazone forms a unique hydrogen bond network with the residues of the PPARγ co-activator binding surface (known as AF2) and makes more extensive contacts with helix 3 and the β-sheet as compared to model TZD compounds such as rosiglitazone.  相似文献   

14.
Hyperglycemia is accompanied by an accelerated formation rate of advanced glycation end products (AGEs), which is associated with the pathogenesis of diabetic neuronal deficits. Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to a family of ligand-activated nuclear receptors and its ligands are known to control many physiological, pathological and inflammatory pathways. Weinvestigated the hypothesis that the PPARγ agonist (rosiglitazone) would abrogate AGEs-mediated neurotoxic effects on human neural stem cells (hNSCs), by whichAGEs may play a role in diabetic-related neuronal impairment. Here, we show that rosiglitazone treatment increases cell viability of hNSCs via downregulation of caspase 3 activity. These rescue effects were extended in our studies showingrosiglitazone-mediated activation of PPARγ reversed the expression levels of two neuroprotective factors (Bcl-2 and PGC1α) that were downregulated in hNSCs exposed to AGEs alone. The stimulation of mitochondrial function and anti-oxidative stress by rosiglitazone was associated with activation of the PGC1α pathway by up-regulation of mitochondrial (NRF-1 and Tfam) and oxidative defense (SOD1, SOD2 and Gpx1) genes. Moreover, rosiglitazone significantly normalized the inflammatory responses (TNF-α and IL-1β), NF-κB (p65), and inflammatory genes (iNOS and COX-2) in the hNSCs treated with AGEs. This neuroprotective effect of rosiglitazone was effectively blocked by PPARγ-specific antagonist (GW9662), demonstrating that the action of rosiglitazone was mediated by at PPARγ-dependent pathway. Collectively, these novel findings show AGEs induce neurotoxic effects in hNSCs, and provide important mechanistic insights that may explain the increased risk of neuronal impairment deficits in diabetic patients. More importantly, these data show rosiglitazone-mediated activation of PPARγ-dependent signaling is neuroprotective in AGE-treated hNSCs, and suggests PPARγ ligands may be useful in the therapeutic management of patients with neurodegenerative diseases  相似文献   

15.
Colorectal cancer (CRC) is a common disease with high mortality and morbidity. Annexin A3 (ANXA3) belongs to the structurally homologous family of Ca2+ and phospholipid-binding proteins. This study aimed to investigate the effects and potential mechanisms of ANXA3 on oxaliplatin (Ox) resistance in CRC. We generated two human CRC cell lines (HCT116/Ox and SW480/Ox) with acquired Ox resistance and determined their resistance properties. ANXA3 expression and cell apoptosis, migration and invasion also were evaluated. We found that cell viability of HCT116/Ox and SW480/Ox was higher than that in parental cells in the presence of Ox. ANXA3 was highly expressed in HCT116/Ox and SW480/Ox cells. ANXA3 downregulation diminished cell survival, migration and invasion, while increased the apoptosis of HCT116 and SW480 with or without Ox. Moreover, depletion of ANXA3 reduced cell viability and BrdU incorporation, increased cell apoptosis and c-caspase 3 expression in HCT116/Ox with or without Ox. A transwell assay determined that knockdown of ANXA3 impeded the migration and invasion of HCT116/Ox and SW480/Ox cells. Additionally, phosphorylation of extracellular signal–regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) decreased upon ANXA3 depletion in HCT116/Ox cells, and ANXA3 silencing suppressed Ox-induced activation of ERK and JNK signaling pathway. ANXA3 downregulation reduced Ox resistance in CRC, and treatment with the ERK inhibitor PD098059 or JNK inhibitor SP600125 contributed to this process. These results indicate that silencing ANXA3 could overcome Ox resistance in CRC via the mitogen-activated protein kinase signaling pathway.  相似文献   

16.

Background

Carotenoids have been found to play roles in the prevention and therapy of some cancers which PPARγ was also discovered to be involved in. The present studies were directed to determine the inhibitory effects of carotenoids in combination with rosiglitazone, a synthetic PPARγ agonist, on K562 cell proliferation and elucidate the contribution of PPARγ-dependent pathway to cell proliferation suppression.

Methods

The effects of carotenoid and rosiglitazone combination on K562 cell proliferation were evaluated by trypan blue dye exclusion assay and MTT assay. When PPARγ has been inhibited by GW9662 and siRNA, cycle-related regulator expression in K562 cells treated with carotenoid and rosiglitazone combination was analyzed by Western blotting.

Results

Rosiglitazone inhibited K562 cell proliferation and augmented the inhibitory effects of carotenoids on the cell proliferation greatly. Specific PPARγ inhibition attenuated the cell growth suppression induced by carotenoid and rosiglitazone combination. GW9662 pre-treatment attenuated the enhanced up-regulation of PPARγ expression caused by the combination treatment. Moreover, GW9662 and PPARγ siRNA also significantly attenuated the up-regulation of p21 and down-regulation of cyclin D1 caused by carotenoids and rosiglitazone.

Conclusions

PPARγ signaling pathway, via stimulating p21 and inhibiting cyclin D1, may play an important role in the anti-proliferative effects of carotenoid and rosiglitazone combination on K562 cells.

General significance

Carotenoids in combination with rosiglitazone are hopeful to provide attractive dietary or supplementation-based and pharmaceutical strategies to treat cancer diseases.  相似文献   

17.
The aim of this study was to investigate whether overexpression of STAMP2 improves insulin resistance by regulating angiogenesis in adipose tissues. The characteristics of diabetic mice were measured by serial metabolite and pathology tests. Samples were obtained from epididymal, subcutaneous and brown adipose tissues. Histological and morphological analysis demonstrated that STAMP2 gene overexpression reduced adipocyte size, angiogenesis in epididymal and brown adipose tissues. On aortic ring assay, microvessels sprouting from aortas were significantly inhibited after STAMP2 gene overexpression. The cellular effect of STAMP2 on angiogenesis was explored in human umbilical vein endothelial cells (HUVECs) model. Correlation of STAMP2 and angiogenesis was validated by Ad‐STAMP2 transfection and STAMP2 siRNA inhibition. In vitro, overexpression of STAMP2 significantly inhibited endothelial cell migration, tube formation. The effects of Ad‐STAMP2 transfection on HUVECs were abolished by treatment with PPARγ antagonist GW9662 (2.5 μM), and the roles of STAMP2 siRNA on HUVECs were also reversed by treatment with PPARγ agonist rosiglitazone (RSG) (0.1 mM). RT‐PCR indicated that STAMP2 could regulate levels of adhesion molecules, vascular endothelial growth factor A and CD36. The expression of PPARγ and CD36 was decreased when STAMP2 was inhibited by siRNA, while PPARγ and CD36 were highly expressed after overexpression of STAMP2. Our results suggested that STAMP2 gene overexpression may improve insulin resistance via attenuating angiogenesis in epididymal and brown adipose tissues through the PPARγ/CD36 signalling pathway.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号