首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vi capsular polysaccharide production is encoded by the viaB locus, which has a limited distribution in Salmonella enterica serovars. In S. enterica serovar Typhi, viaB is encoded on a 134-kb pathogenicity island known as SPI-7 that is located between partially duplicated tRNA(pheU) sites. Functional and bioinformatic analysis suggests that SPI-7 has a mosaic structure and may have evolved as a consequence of several independent insertion events. Analysis of viaB-associated DNA in Vi-positive S. enterica serovar Paratyphi C and S. enterica serovar Dublin isolates revealed the presence of similar SPI-7 islands. In S. enterica serovars Paratyphi C and Dublin, the SopE bacteriophage and a 15-kb fragment adjacent to the intact tRNA(pheU) site were absent. In S. enterica serovar Paratyphi C only, a region encoding a type IV pilus involved in the adherence of S. enterica serovar Typhi to host cells was missing. The remainder of the SPI-7 islands investigated exhibited over 99% DNA sequence identity in the three serovars. Of 30 other Salmonella serovars examined, 24 contained no insertions at the equivalent tRNA(pheU) site, 2 had a 3.7-kb insertion, and 4 showed sequence variation at the tRNA(pheU)-phoN junction, which was not analyzed further. Sequence analysis of the SPI-7 region from S. enterica serovar Typhi strain CT18 revealed significant synteny with clusters of genes from a variety of saprophytic bacteria and phytobacteria, including Pseudomonas aeruginosa and Xanthomonas axonopodis pv. citri. This analysis suggested that SPI-7 may be a mobile element, such as a conjugative transposon or an integrated plasmid remnant.  相似文献   

2.
The Salmonella enterica serovar Typhi CT18 (S.Typhi) chromosome harbours seven distinct prophage-like elements, some of which may encode functional bacteriophages. In silico analyses were used to investigate these regions in S.Typhi CT18, and ultimately compare these integrated bacteriophages against 40 other Salmonella isolates using DNA microarray technology. S.Typhi CT18 contains prophages that show similarity to the lambda, Mu, P2 and P4 bacteriophage families. When compared to other S.Typhi isolates, these elements were generally conserved, supporting a clonal origin of this serovar. However, distinct variation was detected within a broad range of Salmonella serovars; many of the prophage regions are predicted to be specific to S.Typhi. Some of the P2 family prophage analysed have the potential to carry non-essential "cargo" genes within the hyper-variable tail region, an observation that suggests that these bacteriophage may confer a level of specialisation on their host. Lysogenic bacteriophages therefore play a crucial role in the generation of genetic diversity within S.enterica.  相似文献   

3.
Haemolysin patterns of 175 strains of different Salmonella enterica subspecies enterica serovars isolated from different animal sources and places were determined using 11 different blood agar media made with either non-washed horse/sheep erythrocytes or with washed erythrocytes of cattle, sheep, horse, goat, rabbit, guinea pig, and human A, O and B blood groups. Study on 47 strains belonging to 10 serovars of Salmonella from buffalo meat (buffen), 42 strains of 11 serovars from goat meat (chevon): 16 strains of Salmonella enterica serovar Paratyphi B and 25 of S. enterica serovar Paratyphi B var Java from fish, meat, meat products and clinical cases; 45 isolates of S. Abortusequi from aborted mares (18), fetal contents (21), aborted donkey mares (2) and 4 reference strains, revealed that all host restricted Salmonella namely, S. enterica serovar Gallinarum, S. enterica serovar Anatum, S. enterica serovar Abortusequi and S. enterica serovar Paratyphi B could be divided into different haemolysin types based on their inability to produce haemolysis on one or more types of blood agar, while strains of all zoonotic Salmonella serovars induced haemolysis on all the 9 types of blood agar made of washed erythrocytes. None of 175 Salmonella could produce hemolytic colonies on blood agar made of non-washed horse/ sheep erythrocytes. Haemolysin type I (lysing all types of washed erythrocytes) was the commonest one among all serovars except S. Abortusequi, none of which lysed horse erythrocytes. Salmonella enterica serovar Abortusequi having hemolytic activity against sheep erythrocytes were more invasive but had lesser ability to survive in sheep mononuclear cells than non-hemolytic strains. Multiplicity of haemolysins appeared significant epidemiological tool.  相似文献   

4.
The ability of salmonellae to become internalized and to survive and replicate in amoebae was evaluated by using three separate serovars of Salmonella enterica and five different isolates of axenic Acanthamoeba spp. In gentamicin protection assays, Salmonella enterica serovar Dublin was internalized more efficiently than Salmonella enterica serovar Enteritidis or Salmonella enterica serovar Typhimurium in all of the amoeba isolates tested. The bacteria appeared to be most efficiently internalized by Acanthamoeba rhysodes. Variations in bacterial growth conditions affected internalization efficiency, but this effect was not altered by inactivation of hilA, a key regulator in the expression of the invasion-associated Salmonella pathogenicity island 1. Microscopy of infected A. rhysodes revealed that S. enterica resided within vacuoles. Prolonged incubation resulted in a loss of intracellular bacteria associated with morphological changes and loss of amoebae. In part, these alterations were associated with hilA and the Salmonella virulence plasmid. The data show that Acanthamoeba spp. can differentiate between different serovars of salmonellae and that internalization is associated with cytotoxic effects mediated by defined Salmonella virulence loci.  相似文献   

5.
A real-time PCR assay with the cycling probe method was used to detect mutations at codons 83 and 87 in the DNA gyrase A subunit encoded by gyrA in Salmonella enterica serovar Typhi and Paratyphi A clinical isolates. The susceptibility estimated from the results of the gyrA mutation assay was consistent with that identified by the culture method using an E-test. This assay allows rapid screening of S. enterica serovar Typhi and Paratyphi A with reduced susceptibility to ciprofloxacin.  相似文献   

6.
Host-to-host transmission in most Salmonella serovars occurs primarily via the fecal-oral route. Salmonella enterica serovar Typhi is a human host-adapted pathogen and some S. Typhi patients become asymptomatic carriers. These individuals excrete large numbers of the bacteria in their feces and transmit the pathogen by contaminating water or food sources. The carrier state has also been described in livestock animals and is responsible for food-borne epidemics. Identification and treatment of carriers are crucial for the control of disease outbreaks. In this review, we describe recent advances in molecular profiling of human carriers and the use of animal models to identify potential host and bacterial genes involved in the establishment of the carrier state.  相似文献   

7.
Genomic rearrangements (duplications and inversions) in enteric bacteria such as Salmonella enterica serovar Typhimurium LT2 and Escherichia coli K12 are frequent (10(-3) to 10(-5)) in culture, but in wild-type strains these genomic rearrangements seldom survive. However, inversions commonly survive in the terminus of replication (TER) region, where bidirectional DNA replication terminates; nucleotide sequences from S. enterica serovar Typhimurium LT2, S. enterica serovar Typhi CT18, E. coli K12, and E. coli O157:H7 revealed genomic inversions spanning the TER region. Assuming that S. enterica serovar Typhimurium LT2 represents the ancestral genome structure, we found an inversion of 556 kb in serovar Typhi CT18 between two of the 25 IS200 elements and an inversion of about 700 kb in E. coli K12 and E. coli O157:H7. In addition, there is another inversion of 500 kb in E. coli O157:H7 compared with E. coli K12. PCR analysis confirmed that all S. enterica serovar Typhi strains tested, but not strains of other Salmonella serovars, have an inversion at the exact site of the IS200 insertions. We conclude that inversions of the TER region survive because they do not significantly change replication balance or because they are part of the compensating mechanisms to regain chromosome balance after it is disrupted by insertions, deletions, or other inversions.  相似文献   

8.
The genus Salmonella consists of over 2,200 serovars that differ in their host range and ability to cause disease despite their close genetic relatedness. The genetic factors that influence each serovar's level of host adaptation, how they evolved or were acquired, their influence on the evolution of each serovar, and the phylogenic relationships between the serovars are of great interest as they provide insight into the mechanisms behind these differences in host range and disease progression. We have used an Salmonella enterica serovar Typhimurium spotted DNA microarray to perform genomic hybridizations of various serovars and strains of both S. enterica (subspecies I and IIIa) and Salmonella bongori to gain insight into the genetic organization of the serovars. Our results are generally consistent with previously published DNA association and multilocus enzyme electrophoresis data. Our findings also reveal novel information. We observe a more distant relationship of serovar Arizona (subspecies IIIa) from the subspecies I serovars than previously measured. We also observe variability in the Arizona SPI-2 pathogenicity island, indicating that it has evolved in a manner distinct from the other serovars. In addition, we identify shared genetic features of S. enterica serovars Typhi, Paratyphi A, and Sendai that parallel their unique ability to cause enteric fever in humans. Therefore, whereas the taxonomic organization of Salmonella into serogroups provides a good first approximation of genetic relatedness, we show that it does not account for genomic changes that contribute to a serovar's degree of host adaptation.  相似文献   

9.
Z66 antigen-positive strains of Salmonella enterica serovar Typhi change flagellin expression in only one direction from the z66 antigen to the d or j antigen, which is different from the phase variation of S. enterica serovar Typhimurium. In the present study, we identified a new flagellin gene in z66 antigen-positive strains of S. enterica serovar Typhi. The genomic structure of the region containing this new flagellin gene was similar to that of fljBA operon of biphasic S. enterica serovars. A fljA-like gene was present downstream of the new flagellin gene. A rho-independent terminator was located between the new flagellin gene and the fljA-like gene. Hin-like gene was not present upstream of the new flagellin gene. We generated a mutant strain of S. enterica serovar Typhi, which carries a deletion of the new flagellin gene. Western blotting revealed that the 51-kDa z66 antigen protein was absent from the population of proteins secreted by the mutant strain. Southern hybridization demonstrated that the z66 antigen-positive strains of S. enterica serovar Typhi carried the new flagellin gene and fliC on two different genomic EcoRI fragments. When z66 antigen-positive strains were incubated with anti-z66 antiserum, the flagellin expression by S. enterica serovar Typhi changed from z66 antigen to j antigen. The new flagellin gene and the fljA-like gene were absent in the strain with altered flagellin expression. These results suggested that the new flagellin gene is a fljB-like gene, which encodes the z66 antigen of S. enterica serovar Typhi, and that deletion of fljBA-like operon may explain why S. enterica serovar Typhi alters the flagellin expression in only one direction from the z66 antigen to the d or j antigen.  相似文献   

10.
Salmonella enterica serovar Typhi and serovar Paratyphi A with reduced susceptibility to fluoroquinolones (MICs of ciprofloxacin, 0.25 to 2 microg/ml) have a mutation at codon either Ser-83 or Asp-87 of gyrA gene. A screening method by PCR-restriction fragment length polymorphism (PCR-RFLP) was designed to screen the mutations at codon Ser-83 and Asp-87 of the gyrA gene of S. enterica serovar Typhi and serovar Paratyphi A clinical isolates. This method successfully screened the gyrA mutations of S. enterica serovar Typhi and serovar Paratyphi A with reduced susceptibility to fluoroquinolones.  相似文献   

11.
AIMS: Development of a PCR assay that can target multiple genes for rapid detection of Salmonella enterica serovar Typhi (S. Typhi) from water and food samples. METHODS AND RESULTS: PCR primers for invasion, O, H and Vi antigen genes, invA, prt, fliC-d and viaB were designed and used for the rapid detection of S. Typhi by multiplex PCR. Internal amplification control, which co-amplified with prt primers, was also included in the assay. The results showed that all cultures of Salmonella were accurately identified by the assay with no nonspecific amplification in other cultures. The assay had 100% detection probability when a cell suspension of 10(4) CFU ml(-1) (500 CFU per reaction) was used. Salmonella Typhi bacteria were artificially inoculated in the water and food (milk and meat rinse) samples and detected by mPCR after overnight pre-enrichment in buffered peptone water. No Salmonella bacteria could be detected from water samples collected from the field by mPCR or standard culture method. CONCLUSIONS: The developed mPCR assay provides specific detection of S. Typhi. SIGNIFICANCE AND IMPACT OF THE STUDY: Rapid methods for detection of S. Typhi from complex environmental matrices are almost nonexistent. The mPCR assay reported in this study can be useful to identify S. Typhi bacteria in field environmental samples.  相似文献   

12.
Genes of Salmonella enterica serovar Typhimurium LT2 expected to be specifically present in Salmonella were selected using the Basic Local Alignment Search Tool (BLAST) program. The 152 selected genes were compared with 11 genomic sequences of Salmonella serovars, including Salmonella enterica subsp. I and IIIb and Salmonella bongori (V), and were clustered into 17 groups by their comparison patterns. A total of 38 primer pairs were constructed to represent each of the 17 groups, and PCR was performed with various Salmonella subspecies including Salmonella enterica subsp. I, II, IIIa, IIIb, IV, VI, and V to evaluate a comprehensive DNA-based scheme for identification of Salmonella subspecies and the major disease-causing Salmonella serovars. Analysis of PCR results showed that Salmonella enterica subsp. I was critically divided from other subspecies, and Salmonella strains belonging to S. enterica subsp. I were clustered based on their serovars. In addition, genotypic relationships within S. enterica subsp. I by PCR results were investigated. Also, Salmonella signature genes, Salmonella enterica serovar Typhimurium signature genes, and Salmonella enterica subsp. I signature genes were demonstrated based on their PCR results. The described PCR method suggests a rapid and convenient method for identification of Salmonella serovars that can be used by nonspecialized laboratories. Genome sequence comparison can be a useful tool in epidemiologic and taxonomic studies of Salmonella.  相似文献   

13.
Salmonella enterica serovars Typhi and Paratyphi A cause systemic infections in humans which are referred to as enteric fever. Multidrug-resistant (MDR) serovar Typhi isolates emerged in the 1980s, and in recent years MDR serovar Paratyphi A infections have become established as a significant problem across Asia. MDR in serovar Typhi is almost invariably associated with IncHI1 plasmids, but the genetic basis of MDR in serovar Paratyphi A has remained predominantly undefined. The DNA sequence of an IncHI1 plasmid, pAKU_1, encoding MDR in a serovar Paratyphi A strain has been determined. Significantly, this plasmid shares a common IncHI1-associated DNA backbone with the serovar Typhi plasmid pHCM1 and an S. enterica serovar Typhimurium plasmid pR27. Plasmids pAKU_1 and pHCM1 share 14 antibiotic resistance genes encoded within similar mobile elements, which appear to form a 24-kb composite transposon that has transferred as a single unit into different positions into their IncHI1 backbones. Thus, these plasmids have acquired similar antibiotic resistance genes independently via the horizontal transfer of mobile DNA elements. Furthermore, two IncHI1 plasmids from a Vietnamese isolate of serovar Typhi were found to contain features of the backbone sequence of pAKU_1 rather than pHCM1, with the composite transposon inserted in the same location as in the pAKU_1 sequence. Our data show that these serovar Typhi and Paratyphi A IncHI1 plasmids share highly conserved core DNA and have acquired similar mobile elements encoding antibiotic resistance genes in past decades.  相似文献   

14.
Abstract All strains and serovars of Salmonella enterica such as serovar Typhimurium, Enteritidis, Dublin, Typhi, etc. were found to carry the Salmonella enterotoxin determinant stn as far as examined in PCR and hybridization studies. However, using MDCK cells for testing the toxicity of the strains under investigation, only a limited number of stn positive strains revealed phenotypically the Salmonella enterotoxin Stn. In contrast to S. enterica , other Enterobacteriaceae including Salmonella bongori were found neither genotypically nor phenotypically Stn toxin positive.  相似文献   

15.
Salmonella enterica serovar Enteritidis, a major cause of food poisoning, can be transmitted to humans through intact chicken eggs when the contents have not been thoroughly cooked. Infection in chickens is asymptomatic; therefore, simple, sensitive, and specific detection methods are crucial for efforts to limit human exposure. Suppression subtractive hybridization was used to isolate DNA restriction fragments present in Salmonella serovar Enteritidis but absent in other bacteria found in poultry environments. Oligonucleotide primers to candidate regions were used in polymerase chain reactions to test 73 non-Enteritidis S. enterica isolates comprising 34 different serovars, including Dublin and Pullorum, two very close relatives of Enteritidis. A primer pair to one Salmonella difference fragment (termed Sdf I) clearly distinguished serovar Enteritidis from all other serovars tested, while two other primer pairs only identified a few non-Enteritidis strains. These primer pairs were also useful for the detection of a diverse collection of clinical and environmental Salmonella serovar Enteritidis isolates. In addition, five bacterial genera commonly found with Salmonella serovar Enteritidis were not detected. By treating total DNA with an exonuclease that degrades sheared chromosomal DNA but not intact circular plasmid DNA, it was shown that Sdf I is located on the chromosome. The Sdf I primers were used to screen a Salmonella serovar Enteritidis genomic library and a unique 4,060-bp region was defined. These results provide a basis for developing a rapid, sensitive, and highly specific detection system for Salmonella serovar Enteritidis and provide sequence information that may be relevant to the unique characteristics of this serovar.  相似文献   

16.
Isolates of the most commonly observed salmonella serovars in Norwegian fish feed factories from 1998 to 2000 (Salmonella enterica serovar Agona, S. enterica serovar Montevideo, S. enterica serovar Senftenberg, and S. enterica serovar Kentucky) were studied by pulsed-field gel electrophoresis (PFGE) and plasmid profile analysis and compared to isolates of the same serovars from fish feed ingredients, humans, and other sources (a total of 112 isolates). Within each serovar, a variety of distinct PFGE types (with similarity levels less than 90%) were observed in the feed ingredients and other sources, while only two distinct types of each serovar were identified in the factories. The combined results of PFGE and plasmid analyses showed that each factory harbored only a few S. enterica clones. Some of these clones persisted for at least 3 years in the factories, indicating that there was long-lasting contamination probably due to inadequate decontamination procedures.  相似文献   

17.
The large pathogenicity island (SPI7) of Salmonella enterica serovar Typhi is a 133,477-bp segment of DNA flanked by two 52-bp direct repeats overlapping the pheU (phenylalanyl-tRNA) gene, contains 151 potential open reading frames, and includes the viaB operon involved in the synthesis of Vi antigen. Some clinical isolates of S. enterica serovar Typhi are missing the entire SPI7, due to its precise excision; these strains have lost the ability to produce Vi antigen, are resistant to phage Vi-II, and invade a human epithelial cell line more rapidly. Excision of SPI7 occurs spontaneously in a clinical isolate of S. enterica serovar Typhi when it is grown in the laboratory, leaves an intact copy of the pheU gene at its novel join point, and results in the same three phenotypic consequences. SPI7 is an unstable genetic element, probably an intermediate in the pathway of lateral transfer of such pathogenicity islands among enteric gram-negative bacteria.  相似文献   

18.
Currently, 2,610 different Salmonella serovars have been described according to the White-Kauffmann-Le Minor scheme. They are routinely differentiated by serotyping, which is based on the antigenic variability at lipopolysaccharide moieties (O antigens), flagellar proteins (H1 and H2 antigens), and capsular polysaccharides (Vi antigens). The aim of this study was to evaluate the potential of matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry for rapid screening and identification of epidemiologically important Salmonella enterica subsp. enterica serovars based on specific sets of serovar-identifying biomarker ions. By analyzing 913 Salmonella enterica subsp. enterica strains representing 89 different serovars using MALDI-TOF mass spectrometry, several potentially serovar-identifying biomarker ions were selected. Based on a combination of genus-, species-, subspecies-, and serovar-identifying biomarker ions, a decision tree classification algorithm was derived for the rapid identification of the five most frequently isolated Salmonella enterica serovars, Enteritidis, Typhimurium/4,[5],12:i:-, Virchow, Infantis, and Hadar. Additionally, sets of potentially serovar-identifying biomarker ions were detected for other epidemiologically interesting serovars, such as Choleraesuis, Heidelberg, and Gallinarum. Furthermore, by using a bioinformatic approach, sequence variations corresponding to single or multiple amino acid exchanges in several biomarker proteins were tentatively assigned. The inclusivity and exclusivity of the specific sets of serovar-identifying biomarker ions for the top 5 serovars were almost 100%. This study shows that whole-cell MALDI-TOF mass spectrometry can be a rapid method for prescreening S. enterica subsp. enterica isolates to identify epidemiologically important serovars and to reduce sample numbers that have to be subsequently analyzed using conventional serotyping by slide agglutination techniques.  相似文献   

19.
We performed an epidemiological study on Salmonella isolated from raw plant-based feed in Spanish mills. Overall, 32 different Salmonella serovars were detected. Despite its rare occurrence in humans and animals, Salmonella enterica serovar California was found to be the predominant serovar in Spanish feed mills. Different typing techniques showed that isolates of this serovar were genetically closely related, and comparative genomic hybridization using microarray technology revealed 23 S. enterica serovar Typhimurium LT2 gene clusters that are absent from serovar California.  相似文献   

20.
Free-range geese were sampled longitudinally and Salmonella isolates characterized to reveal highly diverging colonization dynamics. One flock was intermittently colonized with one strain of Salmonella enterica serovar Enteritidis from 2 weeks of age, while in another, S. enterica serovar Mbandaka appeared after 9 weeks, without dissemination but with multiple serovars appearing at later stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号