首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently showed that streptozotocin (STZ) injections in rats lead to the development of painful peripheral diabetic neuropathy (PDN) accompanied by enhancement of CaV3.2 T-type calcium currents (T-currents) and hyperexcitability in dorsal root ganglion (DRG) neurons. Here we used the classical peripherally acting T-channel blocker mibefradil to examine the role of CaV3.2 T-channels as pharmacological targets for treatment of painful PDN. When administered intraperitoneally (i.p.), at clinically relevant doses, mibefradil effectively alleviated heat, cold and mechanical hypersensitivities in STZ-treated diabetic rats in a dose-dependent manner. We also found that CaV3.2 antisense (AS)-treated diabetic rats exhibit a significant decrease in painful PDN compared with mismatch antisense (MIS)-treated diabetic rats. Co-treatment with mibefradil (9 mg/kg i.p.) resulted in reversal of heat, cold and mechanical hypersensitivity in MIS-treated but not in AS-treated diabetic rats, suggesting that mibefradil and CaV3.2 AS share the same cellular target. Using patch-clamp recordings from acutely dissociated DRG neurons, we demonstrated that mibefradil similarly blocked T-currents in diabetic and healthy rats in a voltage-dependent manner by stabilizing inactive states of T-channels. We conclude that antihyperalgesic and antiallodynic effects of mibefradil in PDN are at least partly mediated by inhibition of CaV3.2 channels in peripheral nociceptors. Hence, peripherally acting voltage-dependent T-channel blockers could be very useful in the treatment of painful symptoms of PDN.  相似文献   

2.
Yan N  Li XH  Cheng Q  Yan J  Ni X  Sun JH 《生理学报》2007,59(2):240-246
慢性压迫大鼠背根神经节(chronic compression of the dorsal root,ganglion,CCD)后,背根神经节细胞兴奋性升高,但引起神经元兴奋性改变的离子通道机制还需进一步探索。本实验采用胞内记录以及全细胞膜片钳记录方法,研究急性分离的大鼠背根神经节细胞兴奋性改变与瞬时外向钾电流(A-type potassium current,ⅠA)的关系。结果表明,CCD术后背根神经节细胞兴奋性升高,在急性分离的体外细胞中仍继续存在,表现为对辣椒素敏感的背根神经节细胞产生动作电位的最小电流刺激强度,即阈电流(current threshold)及阈电位(voltage threshold)降低;给予正常对照组神经元(未压迫损伤)瞬时外向钾通道阻断剂4-氨基吡啶,出现了类似CCD术后兴奋性升高的改变。进一步用两步电压钳方法分离ⅠA,研究CCD术后神经元ⅠA的变化,结果表明,CCD组神经元的ⅠA比对照组神经元ⅠA降低,并且与其阈电位的改变一致。以上结果提示,背根神经节压迫受损后,神经节细胞ⅠA降低可能参与介导了神经节细胞兴奋性的升高。  相似文献   

3.
Voltage-gated sodium channels play important roles in modulating dorsal root ganglion (DRG) neuron hyperexcitability and hyperalgesia after peripheral nerve injury or inflammation. We report that chronic compression of DRG (CCD) produces profound effect on tetrodotoxin-resistant (TTX-R) and tetrodotoxin-sensitive (TTX-S) sodium currents, which are different from that by chronic constriction injury (CCI) of the sciatic nerve in small DRG neurons. Whole cell patch-clamp recordings were obtained in vitro from L4 and/or L5 dissociated, small DRG neurons following in vivo DRG compression or nerve injury. The small DRG neurons were classified into slow and fast subtype neurons based on expression of the slow-inactivating TTX-R and fast-inactivating TTX-S Na+ currents. CCD treatment significantly reduced TTX-R and TTX-S current densities in the slow and fast neurons, but CCI selectively reduced the TTX-R and TTX-S current densities in the slow neurons. Changes in half-maximal potential (V1/2) and curve slope (k) of steady-state inactivation of Na+ currents were different in the slow and fast neurons after CCD and CCI treatment. The window current of TTX-R and TTX-S currents in fast neurons were enlarged by CCD and CCI, while only that of TTX-S currents in slow neurons was increased by CCI. The decay rate of TTX-S and both TTX-R and TTX-S currents in fast neurons were reduced by CCD and CCI, respectively. These findings provide a possible sodium channel mechanism underlying CCD-induced DRG neuron hyperexcitability and hyperalgesia and demonstrate a differential effect in the Na+ currents of small DRG neurons after somata compression and peripheral nerve injury. This study also points to a complexity of hyperexcitability mechanisms contributing to CCD and CCI hyperexcitability in small DRG neurons.  相似文献   

4.
Painful diabetic neuropathy (PDN) is a common and troublesome diabetes complication. Protein kinase C (PKC)-mediated dorsal root ganglia (DRG) P2X3 receptor upregulation is one important mechanism underlying PDN. Accumulating evidence demonstrated that electroacupuncture (EA) at low frequency could effectively attenuate neuropathic pain. Our previous study showed that 2-Hz EA could relieve pain well in PDN. The study aimed to investigate whether 2-Hz EA relieves pain in PDN through suppressing PKC-mediated DRG P2X3 receptor upregulation. A 7-week feeding of high-fat and high-sugar diet plus a single injection of streptozotocin (STZ) in a dose of 35 mg/kg after a 5-week feeding of the diet successfully induced type 2 PDN in rats as revealed by the elevated body weight, fasting blood glucose, fasting insulin and insulin resistance, and the reduced paw withdrawal threshold (PWT), as well as the destructive ultrastructural change of sciatic nerve. DRG plasma membrane P2X3 receptor level and DRG PKC expression were elevated. Two-hertz EA failed to improve peripheral neuropathy; however, it reduced PWT, DRG plasma membrane P2X3 receptor level, and DRG PKC expression in PDN rats. Intraperitoneal administration of P2X3 receptor agonist αβ-meATP or PKC activator phorbol 12-myristate 13-acetate (PMA) blocked 2-Hz EA analgesia. Furthermore, PMA administration increased DRG plasma membrane P2X3 receptor level in PDN rats subject to 2-Hz EA treatment. These findings together indicated that the analgesic effect of EA in PDN is mediated by suppressing PKC-dependent membrane P2X3 upregulation in DRG. EA at low frequency is a valuable approach for PDN control.  相似文献   

5.
Previous studies suggest that adenosine A1 receptors (A1R) modulate the processing of pain. The aim of this study was to characterize the distribution of A1R in nociceptive tissues and to evaluate whether targeting A1R with the partial agonist capadenoson may reduce neuropathic pain in mice. The cellular distribution of A1R in dorsal root ganglia (DRG) and the spinal cord was analyzed using fluorescent in situ hybridization. In behavioral experiments, neuropathic pain was induced by spared nerve injury or intraperitoneal injection of paclitaxel, and tactile hypersensitivities were determined using a dynamic plantar aesthesiometer. Whole-cell patch-clamp recordings were performed to assess electrophysiological properties of dissociated DRG neurons. We found A1R to be expressed in populations of DRG neurons and dorsal horn neurons involved in the processing of pain. However, administration of capadenoson at established in vivo doses (0.03–1.0 mg/kg) did not alter mechanical hypersensitivity in the spared nerve injury and paclitaxel models of neuropathic pain, whereas the standard analgesic pregabalin significantly inhibited the pain behavior. Moreover, capadenoson failed to affect potassium currents in DRG neurons, in contrast to a full A1R agonist. Despite expression of A1R in nociceptive neurons, our data do not support the hypothesis that pharmacological intervention with partial A1R agonists might be a valuable approach for the treatment of neuropathic pain.  相似文献   

6.
Painful neuropathy is one of the most serious complications of diabetes and remains difficult to treat. The muscarinic acetylcholine receptor (mAChR) agonists have a profound analgesic effect on painful diabetic neuropathy. Here we determined changes in T-type and high voltage-activated Ca(2+) channels (HVACCs) and their regulation by mAChRs in dorsal root ganglion (DRG) neurons in a rat model of diabetic neuropathy. The HVACC currents in large neurons, T-type currents in medium and large neurons, the percentage of small DRG neurons with T-type currents, and the Cav3.2 mRNA level were significantly increased in diabetic rats compared with those in control rats. The mAChR agonist oxotremorine-M significantly inhibited HVACCs in a greater proportion of DRG neurons with and without T-type currents in diabetic than in control rats. In contrast, oxotremorine-M had no effect on HVACCs in small and large neurons with T-type currents and in most medium neurons with T-type currents from control rats. The M(2) and M(4) antagonist himbacine abolished the effect of oxotremorine-M on HVACCs in both groups. The selective M(4) antagonist muscarinic toxin-3 caused a greater attenuation of the effect of oxotremorine-M on HVACCs in small and medium DRG neurons in diabetic than in control rats. Additionally, the mRNA and protein levels of M(4), but not M(2), in the DRG were significantly greater in diabetic than in control rats. Our findings suggest that diabetic neuropathy potentiates the activity of T-type and HVACCs in primary sensory neurons. M(4) mAChRs are up-regulated in DRG neurons and probably account for increased muscarinic analgesic effects in diabetic neuropathic pain.  相似文献   

7.
Chronic pancreatitis (CP) is a relatively common disorder, characterized by glandular insufficiency and chronic, often intractable, pain. The mechanism of pain in CP is poorly understood. We have previously developed a model of trinitrobenzene sulphonic acid (TNBS)-induced CP that results in nociceptive sensitization in rats. This study was designed to examine changes in the excitability and alteration of voltage-gated K(+) currents of dorsal root ganglia (DRG) neurons innervating the pancreas. CP was induced in adult rats by an intraductal injection of TNBS. DRG neurons innervating the pancreas were identified by 1,1'-dioleyl-3,3,3',3-tetramethylindocarbocyanine methanesulfonate fluorescence labeling. Perforated patch-clamp recordings were made from acutely dissociated DRG neurons from control and TNBS-treated rats. Pancreas-specific DRG neurons displayed more depolarized resting potentials in TNBS-treated rats than those in controls (P < 0.02). Some neurons from the TNBS-treated group exhibited spontaneous firings. TNBS-induced CP also resulted in a dramatic reduction in rheobase (P < 0.05) and a significant increase in the number of action potentials evoked at twice rheobase (P < 0.05). Under voltage-clamp conditions, neurons from both groups exhibited transient A-type (I(A)) and sustained outward rectifier K(+) currents (I(K)). Compared with controls, the average I(A) but not the average I(K) density was significantly reduced in the TNBS-treated group (P < 0.05). The steady-state inactivation curve for I(A) was displaced by approximately 20 mV to more hyperpolarized levels after the TNBS treatment. These data suggest that TNBS treatment increases the excitability of pancreas-specific DRG neurons by suppressing I(A) density, thus identifying for the first time a specific molecular mechanism underlying chronic visceral pain and sensitization in CP.  相似文献   

8.
Streptozotocin (STZ)-induced type 1 diabetes in rats leads to the development of peripheral diabetic neuropathy (PDN) manifested as thermal hyperalgesia at early stages (4th week) followed by hypoalgesia after 8 weeks of diabetes development. Here we found that 6–7 week STZ-diabetic rats developed either thermal hyper- (18%), hypo- (25%) or normalgesic (57%) types of PDN. These developmentally similar diabetic rats were studied in order to analyze mechanisms potentially underlying different thermal nociception. The proportion of IB4-positive capsaicin-sensitive small DRG neurons, strongly involved in thermal nociception, was not altered under different types of PDN implying differential changes at cellular and molecular level. We further focused on properties of T-type calcium and TRPV1 channels, which are known to be involved in Ca2 + signaling and pathological nociception. Indeed, TRPV1-mediated signaling in these neurons was downregulated under hypo- and normalgesia and upregulated under hyperalgesia. A complex interplay between diabetes-induced changes in functional expression of Cav3.2 T-type calcium channels and depolarizing shift of their steady-state inactivation resulted in upregulation of these channels under hyper- and normalgesia and their downregulation under hypoalgesia. As a result, T-type window current was increased by several times under hyperalgesia partially underlying the increased resting [Ca2 +]i observed in the hyperalgesic rats. At the same time Cav3.2-dependent Ca2 + signaling was upregulated in all types of PDN. These findings indicate that alterations in functioning of Cav3.2 T-type and TRPV1 channels, specific for each type of PDN, may underlie the variety of pain syndromes induced by type 1 diabetes.  相似文献   

9.
目的:探究天麻素对Ⅱ型糖尿病神经病理性痛的镇痛作用以及天麻素对背根神经节Nav1.6通道的表达调控作用。方法:将60只雄性SD大鼠随机分为空白对照组、糖尿病组和天麻素处理组(10 mg·kg-1·d-1)。通过高脂饮食喂养4周,低剂量腹腔注射STZ(30 mg·kg-1)的方法构建Ⅱ型糖尿病神经病理性痛大鼠模型,利用痛行为学检测观察各组大鼠的机械刺激足缩反应阈值变化,采用免疫荧光组织化学及Western blot方法观察各组大鼠背根神经节上Nav1.6通道的表达变化。结果:与空白对照组相比,糖尿病模型大鼠出现显著的机械刺激疼痛阈值下降(P<0.05),且模型组大鼠背根神经节神经元上的Nav1.6通道表达上调(P<0.05)。与糖尿病组相比,连续腹腔注射天麻素3天、7天、14天后,模型动物的疼痛明显缓解(P<0.05),另外天麻素可以翻转背根神经节上Nav1.6通道的高表达(P<0.05)。结论:天麻素可能通过降低Nav1.6通道的表达来缓解Ⅱ型糖尿病神经病理性疼痛,从而为天麻素缓解糖尿病神经病理性疼痛提供新的理论依据。  相似文献   

10.
The aim of this study was to determine the effect and mechanism of low concentration of lidocaine on subthreshold membrane potential oscillations (SMPO) and burst discharges in chronically compressed dorsal root ganglion (DRG) neurons. DRG neurons were isolated by enzymatic dissociation method. SMPO, burst discharges and single spike were elicited by whole cell patch-clamp technique in current clamp mode. Persistent Na(+) current (I(NaP)) and transient Na(+) current (I(NaT)) were elicited in voltage clamp mode. The results showed that SMPO was suppressed and burst discharges were eliminated by tetrodotoxin (TTX, 0.2 micromol/l) in current clamp mode, I(NaP) was blocked by 0.2 micromol/l TTX in voltage clamp mode. SMPO, burst discharges and I(NaP) were also suppressed by low concentration of lidocaine (10 micromol/l) respectively. However, single spike and I(NaT) could only be blocked by high concentration of lidocaine (5 mmol/l). From these results, it is suggested that I(NaP) mediates the generation of SMPO in injured DRG neurons. Low concentration of lidocaine (10 micromol/l) suppresses SMPO by selectively inhibiting I(NaP), but not I(NaT), in chronically compressed DRG neurons.  相似文献   

11.
Xie RG  Zheng DW  Xing JL  Zhang XJ  Song Y  Xie YB  Kuang F  Dong H  You SW  Xu H  Hu SJ 《PloS one》2011,6(4):e18681
In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP)). The I(NaP) is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG) is the gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of I(NaP) in DRG neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which blocks the I(NaP), also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly, riluzole also abolished subthreshold membrane potential oscillations (SMPOs), although DRG neurons still responded to intracellular current injection with a single full-sized spike. In addition, the I(NaP) was enhanced in medium- and large-sized neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the I(NaP) without affecting the transient sodium current (I(NaT)). Taken together, these results demonstrate for the first time that the I(NaP) blocker riluzole selectively inhibits I(NaP) and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests that the I(NaP) of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.  相似文献   

12.
Differential alterations of sodium channels in small nociceptive C-fiber DRG neurons have been implicated in diabetic neuropathy. In this study, we investigated sodium currents and the expression of sodium channels in large A-fiber DRG neurons in diabetic rats. Compared with controls, large neurons from diabetic rats showed significant increases in both total and TTX-S sodium currents and approximately -15mV shifts in their voltage-dependent activation kinetics. TTX-R Na(v)1.9 sodium current was also significantly increased, whereas no alteration of TTX-R Na(v)1.8 current was observed in neurons from diabetic rats. Sodium current induced by fast- or slow-voltage ramps increased markedly in the diabetic neurons as well. Immunofluorescence studies showed significant increases in the levels and number of large DRG neurons from diabetic rats expressing Na(v)1.2, Na(v)1.3, Na(v)1.7, and Na(v)1.9 whereas Na(v)1.8 decreased. We also observed a decrease in the number of nodes of Ranvier expressing Na(v)1.8 and in staining intensity of Na(v)1.6 and Na(v)1.8 at nodes. Our results suggest that alterations of sodium channels occur in large DRG neurons and A-fibers, and may play an important role in diabetic sensory neuropathy.  相似文献   

13.
The etiology of painful diabetic neuropathy is poorly understood, but may result from neuronal hyperexcitability secondary to alterations of Ca2+ signaling in sensory neurons. The naturally occurring amino acid taurine functions as an osmolyte, antioxidant, Ca2+ modulator, inhibitory neurotransmitter, and analgesic such that its depletion in diabetes may predispose one to neuronal hyperexcitability and pain. This study reports the effects of taurine replacement on hyperalgesia and sensory neuron Ca2+ homeostasis in streptozotocin-diabetic (STZ-D) rats. Nondiabetic and STZ-D rats were treated with a 2% taurine-supplemented diet for 6-12 wk. Thermal hyperalgesia and mechanical allodynia were determined by measuring hindpaw withdrawal latency to radiant heat and the withdrawal threshold to the von Frey anesthesiometer. Intracellular Ca2+ signaling was explored in neurons from L4-L6 dorsal root ganglia (DRG), using fura 2 fluorescence. Taurine replacement of diabetic rats attenuated deficits of nerve conduction and prevented reductions of mechanical and thermal withdrawal threshold and latency, respectively. In small DRG sensory neurons from diabetic rats, recovery of intracellular Ca2+ concentration ([Ca2+]i) in response to KCl was slowed and 73% corrected by taurine. The amplitudes of caffeine and ATP-induced [Ca2+]i transients were decreased by 47 and 27% (P < 0.05), respectively, in diabetic rat DRG sensory neurons and corrected by 74 and 93% (P < 0.05), respectively, by taurine replacement. These data indicate that taurine is important in the regulation of neuronal Ca2+ signaling and that taurine deficiency may predispose one to nerve hyperexcitability and pain, complicating diabetes.  相似文献   

14.
Diabetes mellitus is associated with one or more kinds of stimulus-evoked pain including hyperalgesia and allodynia. The mechanisms underlying painful diabetic neuropathy remain poorly understood. Previous studies demonstrate an important role of vanilloid receptor 1 (VR1) in inflammation and injury-induced pain. Here we investigated the function and expression of VR1 in dorsal root ganglion (DRG) neurons isolated from streptozotocin-induced diabetic rats between 4 and 8 weeks after onset of diabetes. DRG neurons from diabetic rats showed significant increases in capsaicin- and proton-activated inward currents. These evoked currents were completely blocked by the capsaicin antagonist capsazepine. Capsaicin-induced desensitization of VR1 was down-regulated, whereas VR1 re-sensitization was up-regulated in DRG neurons from diabetic rats. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate blunted VR1 desensitization, and this effect was reversible in the presence of the PKC inhibitor bisindolylmaleimide I. Compared with the controls, VR1 protein was decreased in DRG whole-cell homogenates from diabetic rats, but increased levels of VR1 protein were observed on plasma membranes. Of interest, the tetrameric form of VR1 increased significantly in DRGs from diabetic rats. Increased phosphorylation levels of VR1 were also observed in DRG neurons from diabetic rats. Colocalization studies demonstrated that VR1 expression was increased in large myelinated A-fiber DRG neurons, whereas it was decreased in small unmyelinated C-fiber neurons as a result of diabetes. These results suggest that painful diabetic neuropathy is associated with altered cell-specific expression of the VR1 receptor that is coupled to increased function through PKC-mediated phosphorylation, oligomerization, and targeted expression on the cell surface membrane.  相似文献   

15.
Recently, we reported that nicotine in vitro at a low 1-μM concentration suppresses hyperexcitability of colonic dorsal root ganglia (DRG; L(1)-L(2)) neurons in the dextran sodium sulfate (DSS)-induced mouse model of acute colonic inflammation (1). Here we show that multiple action potential firing in colonic DRG neurons persisted at least for 3 wk post-DSS administration while the inflammatory signs were diminished. Similar to that in DSS-induced acute colitis, bath-applied nicotine (1 μM) gradually reduced regenerative multiple-spike action potentials in colonic DRG neurons to a single action potential in 3 wk post-DSS neurons. Nicotine (1 μM) shifted the activation curve for tetrodotoxin (TTX)-resistant sodium currents in inflamed colonic DRG neurons (voltage of half-activation changed from -37 to -32 mV) but did not affect TTX-sensitive currents in control colonic DRG neurons. Further, subcutaneous nicotine administration (2 mg/kg b.i.d.) in DSS-treated C57Bl/J6 male mice resulted in suppression of hyperexcitability of colonic DRG (L(1)-L(2)) neurons and the number of abdominal constrictions in response to intraperitoneal injection of 0.6% acetic acid. Collectively, the data suggest that neuronal nicotinic acetylcholine receptor-mediated suppression of hyperexcitability of colonic DRG neurons attenuates reduction of visceral hypersensitivity in DSS mouse model of colonic inflammation.  相似文献   

16.
A previous study showed that antitumor-analgesic peptide (AGAP), a novel recombinant polypeptide, which had been expressed in Escherichia coli, exhibits analgesic and antitumor effects in mice. In the present study, we investigated the underlying analgesic mechanism of AGAP. The effect of AGAP on voltage-gated calcium channels (VGCCs) was assessed in acutely isolated rat dorsal root ganglia (DRG) neurons using the whole-cell patch clamp technique. The results showed that AGAP potently inhibited VGCCs, especially high-voltage activated (HVA) calcium channels. AGAP inhibited HVA and T-type calcium currents in a dose-dependent manner, but had no significant effect on their dynamic functions in rat small-diameter DRG neurons. AGAP inhibited N- and L-type calcium currents at 78.2% and 57.3%, respectively. Thus, the present study demonstrates that AGAP affects calcium currents through the inhibition of N-, L- and T-type channels in DRG neurons, explaining the potential mechanisms of antinociception.  相似文献   

17.
The upregulation of nociceptive ion channels expressed in dorsal root ganglia (DRG) contributes to the development and retaining of diabetic pain symptoms. The flavonoid quercetin (3,3′,4′,5,7-pentahydroxyflavone) is a component extracted from various fruits and vegetables and exerts anti-inflammatory, analgesic, anticarcinogenic, antiulcer, and antihypertensive effects. However, the exact mechanism underlying quercetin's analgesic action remains poorly understood. The aim of this study was to investigate the effects of quercetin on diabetic neuropathic pain related to the P2X4 receptor in the DRG of type 2 diabetic rat model. Our data showed that both mechanical withdrawal threshold and thermal withdrawal latency in diabetic rats treated with quercetin were higher compared with those in untreated diabetic rats. The expression levels of P2X4 messenger RNA and protein in the DRG of diabetic rats were increased compared with the control rats, while quercetin treatment significantly inhibited such enhanced P2X4 expression in diabetic rats. The satellite glial cells (SGCs) enwrap the neuronal soma in the DRG. Quercetin treatment also lowered the elevated coexpression of P2X4 and glial fibrillary acidic protein (a marker of SGCs) and decreased the upregulation of phosphorylated p38 mitogen-activated protein kinase (p38MAPK) in the DRG of diabetic rats. Quercetin significantly reduced the P2X4 agonist adenosine triphosphate-activated currents in HEK293 cells transfected with P2X4 receptors. Thus, our data demonstrate that quercetin may decrease the upregulation of the P2X4 receptor in DRG SGCs, and consequently inhibit P2X4 receptor-mediated p38MAPK activation to relieve the mechanical and thermal hyperalgesia in diabetic rats.  相似文献   

18.
Transient receptor potential ion channel melastatin subtype 8 (TRPM8) is activated by cold temperature and cooling agents, such as menthol and icilin. Compounds containing peppermint are reported to reduce symptoms of environmental cold stress such as cold allodynia in dorsal root ganglion (DRG) neuron; however, the underlying mechanisms of action are unclear. We tested the effects of physiological heat (37°C), anthralic acid (ACA and 0.025 mM), 2-aminoethyl diphenylborinate (2-APB and 0.05) on noxious cold (10°C) and menthol (0.1 mM)-induced TRPM8 cation channel currents in the DRG neurons of rats. DRG neurons were freshly isolated from rats. In whole-cell patch clamp experiments, TRPM8 currents were consistently induced by noxious cold or menthol. TRPM8 channels current densities of the neurons were higher in cold and menthol groups than in control. When the physiological heat is introduced by chamber TRPM8 channel currents were inhibited by the heat. Noxious cold-induced Ca2+ gates were blocked by the ACA although menthol-induced TRPM8 currents were not blocked by ACA and 2-APB. In conclusion, the results suggested that activation of TRPM8 either by menthol or nociceptive cold can activate TRPM8 channels although we observed the protective role of heat, ACA and 2-APB through a TRPM8 channel in nociceptive cold-activated DRG neurons. Since cold allodynia is a common feature of neuropathic pain and diseases of sensory neuron, our findings are relevant to the etiology of neuropathology in DRG neurons.  相似文献   

19.
Transduction and transmission properties of primary nociceptive afferents.   总被引:3,自引:0,他引:3  
The prototypical primary nociceptive afferent is the polymodal C-fiber nociceptor, which responds to noxious thermal, mechanical, and chemical stimuli. C-fiber nociceptors are peripheral terminals of small neurons in the dorsal root ganglia (DRG). DRG neurons must therefore supply their peripheral terminals with the molecular machinery for the encoding of noxious stimuli into trains of action potentials. The following phenomena are known for this encoding process in vivo: 1) adaptation: for a constant stimulus intensity the action potential discharge decreases slowly within 2-3 seconds, 2) fatigue: recovery from adaptation may take ten minutes or more, 3) sensitization: preceding tissue damage enhances the response, particularly to heat stimuli. Recent studies in vitro have provided important clues about the molecular mechanisms underlying these phenomena. Several membrane receptors and channels are specifically expressed in small nociceptive neurons, such as vanilloid receptors (VR1), purinergic receptors (P2X3), acid sensing ion channels (ASIC), and TTX-resistant Na-channels. In the near future, we may therefore expect major advances in our understanding of the transduction of noxious stimuli into generator potentials and transformation into trains of action potentials. Along the axon that leads from the innervated tissue to the spinal cord, primary nociceptive afferents have a limited capacity to transmit high impulse rates, suggesting a different composition of voltage-gated channels than in other primary afferents (low-threshold mechanoreceptors and thermoreceptors). Finally, the DRG neuron also supplies its central terminals with the molecular machinery for synaptic transmission and its presynaptic modulation. Progress in understanding the cellular mechanisms at both ends of the primary nociceptive neuron promises to lead to new analgesic treatment modalities for both acute and chronic pain.  相似文献   

20.
The composition of Na+ currents in dorsal root ganglia (DRG) neurons depends on their neuronal phenotype and innervation target. Two TTX-resistant (TTX-R) Na+ currents [voltage-gated Na channels (Nav)] have been described in small DRG neurons; one with slow inactivation kinetics (Nav1.8) and the other with persistent kinetics (Nav1.9), and their modulation has been implicated in inflammatory pain. This has not been studied in neurons projecting to the colon. This study examined the relative importance of these currents in inflammation-induced changes in a mouse model of inflammatory bowel disease. Colonic sensory neurons were retrogradely labeled, and colitis was induced by instillation of trinitrobenzenesulfonic acid (TNBS) into the lumen of the distal colon. Seven to ten days later, immunohistochemical properties were characterized in controls, and whole cell recordings were obtained from small (<40 pF) labeled DRG neurons from control and TNBS animals. Most neurons exhibited both fast TTX-sensitive (TTX-S)- and slow TTX-R-inactivating Na+ currents, but persistent TTX-R currents were uncommon (<15%). Most labeled neurons were CGRP (79%), tyrosine kinase A (trkA) (84%) immunoreactive, but only a small minority bind IB4 (14%). TNBS-colitis caused ulceration, thickening of the colon and significantly increased neuronal excitability. The slow TTX-R-inactivating Na current density (Nav1.8) was significantly increased, but other Na currents were unaffected. Most small mouse colonic sensory neurons are CGRP, trkA immunoreactive, but not isolectin B4 reactive and exhibit fast TTX-S, slow TTX-R, but not persistent TTX-R Na+ currents. Colitis-induced hyperexcitability is associated with increased slow TTX-R (Nav1.8) Na+ current. Together, these findings suggest that colitis alters trkA-positive neurons to preferentially increase slow TTX-R Na+ (Nav1.8) currents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号