首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黄土丘陵区植被恢复的土壤碳水效应   总被引:3,自引:0,他引:3  
冯棋  杨磊  王晶  石学圆  汪亚峰 《生态学报》2019,39(18):6598-6609
黄土高原大规模植被恢复显著影响了这一区域土壤水分和有机碳(SOC),从而影响其承载的土壤水源涵养和固碳服务。明确深层土壤水分和有机碳对植被恢复的响应特征是当前黄土高原地区生态水文与生态系统服务研究的一个重要科学问题,其中植被类型以及生长年限是这一过程的重要影响因素。然而,目前关于深层土壤有机碳和土壤水分对植被恢复的响应及二者关系的研究较少。通过对陕北典型黄土丘陵区不同植被类型和生长年限下0—5 m土壤水分与有机碳的监测,分析了深层土壤水分和有机碳对植被恢复的响应及其特征。研究发现:(1)植被恢复后0—5 m土层均出现水分亏缺,土壤水分亏缺在表层1 m最低,2—3 m最高;对于不同恢复方式,林地土壤水分亏缺在恢复至21—30a时显著高于前一阶段(11—20a),而在恢复31a后水分开始恢复,而灌木、草地土壤水分亏缺程度则随恢复年限延长不断增加。(2)林地、灌木、草地0—5 m平均土壤有机碳含量为1.97、1.77、1.72 g/kg;林地土壤固碳量随恢复年限的增加而增加,并且在恢复20a时固碳量与对照农田相比出现净增;灌木土壤固碳量随恢复年限先增加后降低;草地土壤固碳量则随退耕年限增加呈下降趋势并且低于对照农田。(3)表层0—1 m土壤水分随恢复年限增加变化不显著,深层土壤水分则随恢复年限增加显著降低;相比而言,随恢复年限增加,土壤有机碳随年限的变化在各层土壤中均不显著。深层土壤水分与土壤有机碳呈现显著的正相关,且土壤有机碳的增加速率低于土壤水分,研究认为,深层土壤固碳与土壤水分关系密切,且深层土壤固碳需要充足水分参与。深层土壤水分亏缺可能限制植被细根的发展,使深层土壤有机碳输入减少。  相似文献   

2.
The present study provides an overview of existing literature on changes in soil organic carbon (SOC) of various terrestrial ecosystems in China. Datasets from the literature suggest that SOC stocks in forest, grassland, shrubland and cropland increased between the early 1980s and the early 2000s, amounting to (71±19) Tg·a−1. Conversion of marshland to cropland in the Sanjiang Plain of northeast China resulted in SOC loss of (6±2) Tg·a−1 during the same period. Nevertheless, large uncertainties exist in these estimates, especially for the SOC changes in the forest, shrubland and grassland. To reduce uncertainty, we suggest that future research should focus on: (i) identifying land use changes throughout China with high spatiotemporal resolution, and measuring the SOC loss and sequestration due to land use change; (ii) estimating the changes in SOC of shrubland and non-forest trees (i.e., cash, shelter and landscape trees); (iii) quantifying the impacts of grassland management on the SOC pool; (iv) evaluating carbon changes in deep soil layers; (v) projecting SOC sequestration potential; and (vi) developing carbon budget models for better estimating the changes in SOC of terrestrial ecosystems in China.  相似文献   

3.
The dynamics of roots and soil organic carbon (SOC) in deeper soil layers are amongst the least well understood components of the global C cycle, but essential if soil C is to be managed effectively. This study utilized a unique set of land-use pairings of harvested tallgrass prairie grasslands (C4) and annual wheat croplands (C3) that were under continuous management for 75 years to investigate and compare the storage, turnover and allocation of SOC in the two systems to 1 m depth. Cropland soils contained 25 % less SOC than grassland soils (115  and 153 Mg C ha?1, respectively) to 1 m depth, and had lower SOC contents in all particle size fractions (2000–250, 250–53, 53–2 and <2 μm), which nominally correspond to SOC pools with different stability. Soil bulk δ13C values also indicated the significant turnover of grassland-derived SOC up to 80 cm depth in cropland soils in all fractions, including deeper (>40 cm) layers and mineral-associated (<53 μm) SOC. Grassland soils had significantly more visible root biomass C than cropland soils (3.2 and 0.6 Mg ha?1, respectively) and microbial biomass C (3.7 and 1.3 Mg ha?1, respectively) up to 1 m depth. The outcomes of this study demonstrated that: (i) SOC pools that are perceived to be stable, i.e. subsoil and mineral-associated SOC, are affected by land-use change; and, (ii) managed perennial grasslands contained larger SOC stocks and exhibited much larger C allocations to root and microbial pools than annual croplands throughout the soil profile.  相似文献   

4.
Minesoils are drastically influenced by anthropogenic activities. They are characterized by low soil organic matter (SOM) content, low fertility, and poor physicochemical and biological properties, limiting their quality, capability, and functions. Reclamation of these soils has potential for resequestering some of the C lost and mitigating CO2 emissions. Soil organic carbon (SOC) sequestration rates in minesoils are high in the first 20 to 30 years after reclamation in the top 15 cm soil depth. In general, higher rates of SOC sequestration are observed for minesoils under pasture and grassland management than under forest land use. Observed rates of SOC sequestration are 0.3 to 1.85 Mg C ha? 1 yr? 1 for pastures and rangelands, and 0.2 to 1.64 Mg C ha? 1 yr? 1 for forest land use. Proper reclamation and postreclamation management may enhance SOC sequestration and add to the economic value of the mined sites. Management practices that may enhance SOC sequestration include increasing vegetative cover by deep-rooted perennial vegetation and afforestation, improving soil fertility, and alleviation of physical, chemical and biological limitations by fertilizers and soil amendments such as biosolids, manure, coal combustion by-products, and mulches. Soil and water conservation are important to SOC sequestration. The potential of SOC sequestration in minesoils of the US is estimated to be 1.28 Tg C yr?1, compared to the emissions from coal combustion of 506 Tg C yr? 1.  相似文献   

5.
针对黄土丘陵区退耕还林(草)工程实施20年固碳效果研究薄弱的问题,以典型退耕小流域为对象,在不同地形(峁坡、沟肩、沟谷)和植被类型(次生草地、撂荒山杏林、撂荒坡耕地)共布设147个样点采集0—100 cm土层样品并测定,以研究土壤有机碳(SOC)分布特征及地形、植被对其的影响。结果表明:小流域峁坡剖面(0—100 cm)土层SOC含量平均为2.43 g/kg。地形和植被类型对小流域SOC分布特征产生了重要影响:沟肩表层和剖面SOC含量均最高且显著(P<0.05)高于沟谷,但与峁坡无显著差异;次生草地表层(0—20 cm)和亚表层(20—40 cm)SOC含量均显著(P<0.05)高于撂荒山杏林和撂荒坡耕地。地统计学分析显示小流域0—20 cm土层SOC含量有最大块金值且块金系数为49.6%,即表层SOC具有最大块金效应且受到结构因素与随机因素共同影响;剖面SOC分布格局表现出与表层土壤相似的特征。总之,退耕还林(草)碳汇效应显著,且在地形和植被类型作用下呈现显著的空间异质性特征。  相似文献   

6.
Precise estimations of soil organic carbon (SOC) stocks are of decided importance for the detection of C sequestration or emission potential induced by land use changes. For Germany, a comprehensive, land use–specific SOC data set has not yet been compiled. We evaluated a unique data set of 1460 soil profiles in southeast Germany in order to calculate representative SOC stocks to a depth of 1 m for the main land use types. The results showed that grassland soils stored the highest amount of SOC, with a median value of 11.8 kg m?2, whereas considerably lower stocks of 9.8 and 9.0 kg m?2 were found for forest and cropland soils, respectively. However, the differences between extensively used land (grassland, forest) and cropland were much lower compared with results from other studies in central European countries. The depth distribution of SOC showed that despite low SOC concentrations in A horizons of cropland soils, their stocks were not considerably lower compared with other land uses. This was due to a deepening of the topsoil compared with grassland soils. Higher grassland SOC stocks were caused by an accumulation of SOC in the B horizon which was attributable to a high proportion of C‐rich Gleysols within grassland soils. This demonstrates the relevance of pedogenetic SOC inventories instead of solely land use–based approaches. Our study indicated that cultivation‐induced SOC depletion was probably often overestimated since most studies use fixed depth increments. Moreover, the application of modelled parameters in SOC inventories is questioned because a calculation of SOC stocks using different pedotransfer functions revealed considerably biased results. We recommend SOC stocks be determined by horizon for the entire soil profile in order to estimate the impact of land use changes precisely and to evaluate C sequestration potentials more accurately.  相似文献   

7.
淮北白浆土是苏鲁交界地区主要低产土壤 ,同时也是我国黄淮地区商品粮生产基地的重要土壤资源。该土壤除了剖面发生分异强烈、土壤理化性质不良外 ,有机碳匮乏是其主要肥力限制因子 [1]。土壤有机碳不但是维持和培育土壤质量的关键组成成分 ,而全球土壤有机碳每年分解释放大气 CO2 而且达到 0 .1~ 5.4C Pg·年 -1,土壤碳 0 .1 %的变化将导致大气圈 CO2 浓度 1 mg· L - 1的变化。因而其存储和释放的变化与大气 CO2 动态有密切的关系 [9,10 ] 。农业土壤对大气 CO2 的截存贡献是研究陆地系统对大气 CO2 的汇效应 (sink effect)的焦点 …  相似文献   

8.
杨桦  彭小瑜  杨淑琪  张云斌  赵才  黄勇 《生态学报》2022,42(17):7105-7117
土地利用方式是影响土壤有机碳库的重要因素,为探究喀斯特断陷盆地土壤有机碳库对土地利用方式及环境因素的响应,以滇南喀斯特地区5种典型土地利用方式(耕地、草地、灌丛、人工林、天然林)为研究对象,分析不同土地利用方式土壤有机碳(SOC)及活性有机碳(LOC)组分,即可溶性有机碳(DOC)、易氧化性有机碳(EOC)及微生物量碳(MBC)的含量、储量及分配比例在土壤垂直剖面(0-60 cm)的变化特征。结果表明:5种土地利用方式的SOC含量随土层深度的增加逐渐降低,其储量依次为灌丛(191.77 t/hm2)、草地(166.86 t/hm2)、耕地(142.47 t/hm2)、人工林(134.31 t/hm2)和天然林(102.62 t/hm2);EOC和MBC的平均含量及储量均以草地及灌丛最高、人工林及天然林次之,二者在土壤垂直剖面上与SOC含量的变化特征一致,但EOC和MBC含量在土层间的下降幅度大于SOC;土地利用方式和土层深度对DOC无显著影响(P>0.05);活性有机碳的分配比例受土地利用方式及土层深度的显著影响(P<0.01),其中人工林的EOC/SOC和MBC/SOC显著低于草地、灌丛及天然林。通径分析指出SOC和EOC主要受C/P比、全磷、砂粒和交换性钙的影响,砂粒和C/P比是影响MBC的主要因子。研究阐明在喀斯特断陷盆地地区EOC和MBC对土地利用方式的响应比SOC更敏感。另外,今后在土壤碳库的研究中应更多关注土壤磷和物理结构对其的影响。  相似文献   

9.
为探究黑土团聚体内土壤有机碳(SOC)的“分馏”特征, 揭示不同植被覆盖下土壤团聚体的固碳机制, 该文以中国科学院海伦农业生态系统国家野外综合研究站内不同植被覆盖(草地、农田和裸地)长期定位实验的土样为研究对象, 利用团聚体湿筛分组、有机碳物理和化学分组相结合的方法, 研究了黑土团聚体及其内部的碳密度和腐殖质组分的碳分配特征。研究发现, 黑土经过不同植被覆盖31年后, 长期草地覆盖使土壤表层SOC、全氮(TN)含量显著增加, 农田和无植被覆盖的裸地SOC含量减少, 且在裸地显著降低。3种处理中, 2-0.25 mm (含2 mm, 下同)粒级团聚体均为优粒级。土壤团聚体的稳定性顺序为草地>农田>裸地。草地覆盖使土壤大团聚体的比例和有机碳库增加, 微团聚体和粉黏粒所占比例和碳库均减少, 说明草地覆盖促进了土壤大团聚体形成, 土壤固碳能力显著增强。而农田和裸地因外源碳投入少, 有机碳含量均是微团聚体>大团聚体>粉黏粒, SOC主要分布在微团聚体中。不同植被覆盖处理对土壤团聚体内密度组分和腐殖质各组分碳的富集“分馏”作用很明显, 与农田和裸地相比, 长期草地植被覆盖处理>2 mm和2-0.25 mm粒级团聚体中轻组碳含量富集的较多, 2-0.25 mm粒级团聚体中富里酸、胡敏酸和胡敏素的碳富集均最高, 而农田和裸地促进了微团聚体内腐殖质碳的富集。草地覆盖显著增加了大团聚体内活性有机碳组分, 来源于植物的碳首先进入到大粒径的团聚体中, 使土壤团聚结构显著改善, 农田和无植被覆盖的裸地土壤中轻组碳含量显著降低, 团聚体内有机碳以重组碳和胡敏素为主, 稳定化程度更高。  相似文献   

10.
次生演替是森林土壤有机碳、氮库变化的重要驱动因素.本研究以长白山原始阔叶红松林和杨桦次生林为例,通过成对样地途径,研究了森林土壤有机碳、氮的数量分布及其协同积累特征,探讨了次生演替导致的温带森林土壤碳库和碳汇效应变化及其碳氮耦合机制.结果表明: 杨桦次生林比原始阔叶红松林在土壤表层和亚表层(0~20 cm)积累了更多的有机碳和氮,其土壤C/N值也显著低于阔叶红松林;相对于阔叶红松林,杨桦次生林土壤(0~20 cm)有机碳储量平均增加了14.7 t·hm-2,相当于29.4 g·m-2·a-1的土壤碳汇增益.土壤有机碳和全氮在不同林型的不同土层中均表现为极显著正相关,二者具有明显的协同积累特征.与阔叶红松林生态系统相比,相对富氮的杨桦次生林生态系统的上部土层中氮对有机碳的决定系数明显高于阔叶红松林,说明杨桦次生林土壤有机碳的积累在更大程度上依赖含氮有机质积累.在有机质最丰富的表层(0~10 cm),两种林型间轻组有机碳、氮储量无显著差异,但杨桦次生林重组有机碳、氮的含量、储量及分配比例均显著高于阔叶红松林,其中,重组有机碳储量平均增加了8.5 t·hm-2,表明次生演替过程中土壤有机碳、氮库的增加主要在于矿物质结合态稳定性土壤有机碳、氮库的增容.凋落物分解和稳定性土壤有机质形成中的碳氮耦合机制是次生演替过程中土壤有机碳、氮库变化的重要驱动机制.  相似文献   

11.
Abstract We used differences in soil carbon δ13C values between forested sites and grasslands dominated by the C4 grass Schizachyrium scoparium (little bluestem) to detect the presence of former grasslands in the historical landscape of the coastal sand plain of Martha's Vineyard, Massachusetts, U.S.A. Soil δ13C was measured at (1) sites with long‐term forest or grassland vegetation and (2) sites with known histories where forest vegetation invaded grassland and where forest converted to grassland. The δ13C of soil under long‐term grassland was –24.1‰ at 0 to 2 cm depth and –23.4‰ at 2 to 10 cm and was enriched by 3.4‰ and 2.8‰ compared with soil under long‐term forest. In forests that invaded grasslands dominated by S. scoparium, soil δ13C decreased as C derived from trees replaced C from S. scoparium. This decline occurred faster in surface soils and in the light soil organic matter fraction than in the mineral soil. In forests that converted to grasslands, soil δ13C increased and the rate of increase was similar in surface and mineral soil and in the different soil organic matter fractions. Rates of change indicated that soil δ13C could be used to detect changes in vegetation involving the presence or absence of S. scoparium during the last 150 years. Application of this model to a potential grassland restoration site on Martha's Vineyard where the landscape history was not known indicated that the site was previously unoccupied by S. scoparium during this time. The δ13C of surface mineral soil can be useful for detecting the presence of historic S. scoparium grasslands but only in the period well after European settlement of these coastal sand plain landscapes.  相似文献   

12.
Afforestation is a prevalent practice carried out for soil recovery and carbon sequestration. Improved understanding of the effects of afforestation on soil organic carbon (SOC) content and dynamics is necessary to identify the particular processes of soil organic matter (SOM) formation and/or decomposition that result from afforestation. To elucidate these mechanisms, we have used a sequential density fractionation technique to identify the transfer mechanisms of forest derived C to soil fractions and investigate the impact of afforestation on SOC sequestration. Surface soil samples from continuous maize crop land (C4) and forest land (C3), which had been established 5, 12 and 25 yr, respectively, on the Northeast China Plain were separated into five density fractions. SOC, nitrogen (N) concentration and δ13C data from the three forests and adjacent cropland were compared. Afforestation decreased SOC concentration in the < 2.5 g cm-3 fractions from 5 yr forest sites, but increased SOC content in the < 2.0 g cm-3 fractions from 25 yr forest sites. Afforestation did not affect soil mass distribution, SOC and N proportional weight distributions across the density fractions. The < 1.8 g cm-3 fractions from 12 and 25 yr forests showed higher C/N and lower δ13C as compared to other fractions. Incorporation of forest litter-derived C occurred from low density (< 1.8 g cm-3) fractions to aggregates of higher density (1.8-2.5 g cm-3) through aggregate recombination and C transport in the pore system of the aggregates. Some forest litter-derived C could transfer from the light fractions or directly diffuse and adsorb onto mineral particles. Results from this study indicate that microaggregate protection and association between organic material and minerals provide major contribution to the SOC sequestration in the afforested soil system.  相似文献   

13.
The establishment of either forest or grassland on degraded cropland has been proposed as an effective method for climate change mitigation because these land use types can increase soil carbon (C) stocks. This paper synthesized 135 recent publications (844 observations at 181 sites) focused on the conversion from cropland to grassland, shrubland or forest in China, better known as the ‘Grain‐for‐Green’ Program to determine which factors were driving changes to soil organic carbon (SOC). The results strongly indicate a positive impact of cropland conversion on soil C stocks. The temporal pattern for soil C stock changes in the 0–100 cm soil layer showed an initial decrease in soil C during the early stage (<5 years), and then an increase to net C gains (>5 years) coincident with vegetation restoration. The rates of soil C change were higher in the surface profile (0–20 cm) than in deeper soil (20–100 cm). Cropland converted to forest (arbor) had the additional benefit of a slower but more persistent C sequestration capacity than shrubland or grassland. Tree species played a significant role in determining the rate of change in soil C stocks (conifer < broadleaf, evergreen < deciduous forests). Restoration age was the main factor, not temperature and precipitation, affecting soil C stock change after cropland conversion with higher initial soil C stock sites having a negative effect on soil C accumulation. Soil C sequestration significantly increased with restoration age over the long‐term, and therefore, the large scale of land‐use change under the ‘Grain‐for‐Green’ Program will significantly increase China's C stocks.  相似文献   

14.
Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long‐term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse‐textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2‐equivalents could theoretically be stored in A horizons of cultivated soils – four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity.  相似文献   

15.
土地利用变化对土壤有机碳的影响研究进展   总被引:20,自引:0,他引:20  
陈朝  吕昌河  范兰  武红 《生态学报》2011,31(18):5358-5371
土壤有机碳是陆地碳库的重要组成部分,也是当前全球碳循环和全球变化研究的热点。土地利用/覆被变化及土地管理变化通过影响土壤有机碳的储量和分布,进而影响温室气体排放和陆地生态系统的碳通量。研究土地利用变化影响下的土壤有机碳储量及其动态变化规律,有助于加深理解全球气候变化与土地利用变化之间的关系。在阅读国内外有关文献的基础上,分别从土地利用及其管理方式变化的角度,概括了土地利用变化对土壤有机碳的影响过程与机理;针对当前研究的两大类方法,即实验方法和模型方法,分类详细介绍了它们各自的特点以及存在的一些问题。在此基础上,提出今后土地利用变化对土壤有机碳影响研究的发展趋势。  相似文献   

16.
稳定碳同位素组成能精确指示生态系统碳循环过程,可以为深入研究森林演替进程对碳循环过程和固碳潜力的影响提供关键信息.利用稳定碳同位素技术对长白山阔叶红松林演替序列3种林分——中龄杨桦次生林、成熟杨桦次生林、阔叶红松林的叶片、树干、根系、凋落物和土壤δ13C值及碳、氮元素含量进行测定.结果表明: 各演替序列优势树种叶片δ13C从冠上到冠下均呈降低趋势;树干δ13C表现为树皮小于木质部;根系δ13C表现为细根小于粗根.阔叶红松林未分解凋落物δ13C小于半分解及全分解凋落物,次生林相反;土壤δ13C沿深度逐渐增加.总体上,δ13C值叶片<凋落物<根系<树干<土壤,说明植物各器官之间有明显的碳同位素分馏效应,且相同器官不同部位之间也存在差异;植物δ13C沿演替方向先减小后增加,土壤δ13C沿演替方向不断增加,且变化规律可以通过氮元素含量与碳同位素分馏效应的关系解释,说明长白山阔叶红松林演替过程优势树种和碳周转速率的变化影响了碳同位素分馏.  相似文献   

17.
生态恢复对红壤侵蚀地土壤有机碳组成及稳定性的影响   总被引:1,自引:0,他引:1  
为了研究红壤侵蚀区生态恢复过程中土壤有机碳的组成与动态变化,选择红壤侵蚀区生态恢复10 a和30 a的马尾松林为对象,以侵蚀裸地和次生林为对照,应用土壤有机碳物理分组方法,研究了侵蚀地植被恢复过程中表层土壤粗颗粒态有机碳(cPOC)、细颗粒态有机碳(f POC)和矿质结合有机碳(MOC)含量及POC/MOC比值的变化。结果表明:生态恢复显著提高了土壤有机碳含量(P0.05),土壤中不同组分有机碳含量也相应增加。生态恢复10 a,土壤有机碳主要以f POC形式积累,cPOC和MOC没有显著变化,其中0—10 cm土层POC占总土壤有机碳(SOC)比例高达64.1%,但稳定性较差。与恢复10 a相比,生态恢复至30 a时,0—10 cm土壤f POC含量相对不变,cPOC和MOC含量均显著增加(P0.05),10—20 cm土壤f POC和MOC增加量达到显著水平,而cPOC含量仍未显著增加,说明生态恢复过程中土壤固碳模式符合SOC饱和理论。生态恢复过程中土壤POC/MOC比值呈先升高后降低的趋势,且表层土壤大于亚表层土壤,说明随着生态恢复时间的增加,土壤有机碳稳定性逐渐提高,且亚表层土壤高于表层。因此,生态恢复对于侵蚀地碳固定的长期有效性具有重要意义。  相似文献   

18.

Background and aims

SOC inventory and soil δ13C were widely used to access the size of soil C pool and to indicate the dynamics of C input and output. The effects of climatic factors and soil physical characteristics and plant litter input on SOC inventory and soil δ13C were analyzed to better understand the dynamics of carbon cycling across ecosystems on the Qinghai-Tibetan Plateau.

Methods

Field investigation was carried out along the two transects with a total of 1,875 km in length and 200 km in width. Sixty-two soil profiles, distributed in forest, meadow, steppe, and cropland, were stratified sampled every 10 cm from 0 to 40 cm.

Results

Our result showed that SOC density in forest and meadows were much higher than in steppe and highland barley. In contrast, δ13C in forest and meadow were lower than in steppe and highland barley. Soil δ13C tended to enrich with increasing soil depth but SOC decline. SOC and δ13C (0–40 cm) were correlated with different climatic factors in different ecosystems, such that SOC correlated negatively with MAT in meadow and positively with MAP in steppe; δ13C correlated positively with MAT in meadow and steppe; and δ13C also tended to increase with increasing MAT in forest. Of the variation of SOC, 55.15 % was explained by MAP, pH and silt content and 4.63 % was explained by the interaction between MAT and pH across all the ecosystems except for the cropland. Meanwhile, SOC density explained 27.40 % of variation of soil δ13C.

Conclusions

It is suggested that different climatic factors controlled the size of the soil C pool in different ecosystems on the Tibetan Plateau. SOC density is a key contributor to the variation of soil δ13C.  相似文献   

19.

Background and aims

Dominance of C4 grasses has been proposed as a means of increasing soil organic carbon (SOC) sequestration in restored tallgrass prairies. However, this hypothesis has not been tested on long time scales and under realistic (e.g. N-limited) environmental conditions. We sampled a restoration in southern Illinois 33 years after establishment to determine the effects of varying plant communities on SOC sequestration in the top 50 cm of soil.

Methods

SOC, total nitrogen (TN), and the stable isotopic composition of SOC (δ13C) were used to calculate SOC sequestration rates, N storage, and the relative contributions of C3 vs. C4 plant communities as a function of soil depth.

Results

While both a forb-dominated and a mixed forb-grass plant community showed positive sequestration rates (0.56?±?0.13 and 0.27?±?0.10 Mg C ha?1 yr?1, respectively), a C4 grass-dominated community showed SOC losses after 33 years of restoration (?0.31?±?0.08 Mg C ha?1 yr?1). Soil δ13C values were significantly more negative for forb-dominated plant communities, increasing the confidence that plant communities were stable over time and an important contributor to differences in SOC stocks among transects.

Conclusion

These results suggest that functional diversity may be necessary to sustain sequestration rates on the scale of decades, and that dominance of C4 grasses, favored by frequent burning, may lead to SOC losses over time.  相似文献   

20.
Under the government of China's environmental program known as Returning Farmland To Forests (RFTF), about 28 million hectares of farmland have been converted to tree plantation. This has led to a large accumulation of biomass carbon, but less is known about underground carbon‐related processes. One permanent plot (25 years of observation) and four chronosequence plot series comprising 159 plots of larch (Larix gmelinii) plantations in northeastern China were studied. Both methods found significant soil organic carbon (SOC) accumulation (96.4 g C m?2 yr?1) and bulk density decrease (5.7 mg cm?3 yr?1) in the surface soil layer (0–20 cm), but no consistent changes in deeper layers, indicating that larch planting under the RFTF program can increase SOC storage and improve the physical properties of surface soil. Nitrogen depletion (4.1–4.3 g m?2 yr?1), soil acidification (0.007–0.022 pH units yr?1) and carbon/nitrogen (C/N) ratio increase (0.16–0.46 per year) were observed in lessive soil, whereas no significant changes were found in typical dark‐brown forest soil. This SOC accumulation rate (96.4 g m?2 yr?1) can take 39% of the total carbon sink capacity [net ecosystem exchange (NEE)] of larch forests in this region and the total soil carbon sequestration could be 87 Tg carbon within 20 years of plantation by approximating all larch plantations in northeastern China (4.5 Mha), showing the importance of soil carbon accumulation in the ecosystem carbon balance. By comparison with the rates of these processes in agricultural use, the RFTF program of reversing land use for agriculture will rehabilitate SOC, soil fertility and bulk density slowly (< 69% of the depletion rate in agricultural use), so that a much longer duration is needed to rehabilitate the underground function of soil via the RFTF program. Global forest plantations on abandoned farmland or function to protecting farmland are of steady growth and our findings may be important for understanding their underground carbon processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号