首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemerin was isolated as the natural ligand of the G protein-coupled receptor ChemR23. Chemerin acts as a chemotactic factor for leukocyte populations expressing ChemR23, particularly immature plasmacytoid dendritic cells, but also immature myeloid DCs, macrophages and natural killer cells. Chemerin is expressed by epithelial and non-epithelial cells as an inactive precursor, present at nanomolar concentrations in plasma. Processing of the precursor C-terminus is required for generating bioactive forms of chemerin. Various proteases mediate this processing, including neutrophil serine proteases and proteases from coagulation and fibrinolytic cascades. ChemR23-expressing cells are recruited in human inflammatory diseases, such as psoriasis and lupus. In animal models, both pro-inflammatory and anti-inflammatory roles of chemerin have been reported. Recently, two other receptors for chemerin were described, GPR1 and CCRL2, but their functional relevance is largely unknown. Both chemerin and ChemR23 are also expressed by adipocytes, and the emerging role of chemerin as an adipokine regulating lipid and carbohydrate metabolism is an area of intense research.  相似文献   

2.

Introduction

Chemerin is a chemotactic agonist identified as a ligand for ChemR23 that is expressed on macrophages and dendritic cells (DCs). In this study, we analyzed the expression of chemerin and ChemR23 in the synovium of rheumatoid arthritis (RA) patients and the stimulatory effects of chemerin on fibroblast-like synoviocytes (FLSs) from RA patients.

Methods

Chemerin and ChemR23 expression in the RA synovium was ascertained by immunohistochemistry and Western blot analysis. Chemerin expression on cultured FLSs was analyzed by ELISA. ChemR23 expression on FLSs was determined by immunocytochemistry and Western blot analysis. Cytokine production from FLSs was measured by ELISA. FLS cell motility was evaluated by utilizing a scrape motility assay. We also examined the stimulating effect of chemerin on the phosphorylation of mitogen-activated protein kinase (MAPK), p44/42 mitogen-activated protein kinase (ERK1/2), p38MAPK, c-Jun N-terminal kinase (JNK)1/2 and Akt, as well as on the degradation of regulator of NF-κB (IκBα) in FLSs, by Western blot analysis.

Results

Chemerin was expressed on endothelial cells and synovial lining and sublining cells. ChemR23 was expressed on macrophages, immature DCs and FLSs and a few mature DCs in the RA synovium. Chemerin and ChemR23 were highly expressed in the RA synovium compared with osteoarthritis. Chemerin and ChemR23 were expressed on unstimulated FLSs. TNF-α and IFN-γ upregulated chemerin production. Chemerin enhanced the production of IL-6, chemokine (C-C motif) ligand 2 and matrix metalloproteinase 3 by FLSs, as well as increasing FLS motility. The stimulatory effects of chemerin on FLSs were mediated by activation of ERK1/2, p38MAPK and Akt, but not by JNK1/2. Degradation of IκB in FLSs was not promoted by chemerin stimulation. Inhibition of the ERK1/2, p38MAPK and Akt signaling pathways significantly suppressed chemerin-induced IL-6 production. Moreover, blockade of the p38MAPK and Akt pathways, but not the ERK1/2 pathway, inhibited chemerin-enhanced cell motility.

Conclusions

The interaction of chemerin and ChemR23 may play an important role in the pathogenesis of RA through the activation of FLSs.  相似文献   

3.

Introduction  

Chemerin is a chemotactic peptide which directs leukocytes expressing the chemokine-like receptor ChemR23 towards sites of inflammation. ChemR23 is a G protein-coupled receptor which binds several different ligands, and it is also expressed by other cell types such as adipocytes. In addition to chemotaxis, recent reports suggest that ChemR23 is capable of mediating either inflammatory or anti-inflammatory effects, depending on the type of ligand it binds. In the present study, we aimed to clarify whether human chondrocytes express ChemR23 and chemerin, and whether chemerin/ChemR23 signalling could affect secretion of inflammatory mediators.  相似文献   

4.
Diabetic nephropathy (DN) is characterized by inflammation of renal tissue. Glomerular endothelial cells (GEnCs) play an important role in inflammation and protein leakage in urine in DN patients. Chemerin and its receptor ChemR23 are inducers of inflammation. The aim of this study was to investigate the function of chemerin/ChemR23 in GEnCs of DN patients. Immunohistochemical staining and qRT‐PCR were used to measure the expression of chemerin, ChemR23 and inflammatory factors in renal tissues of DN patients. Db/db mice were used as animal model. ChemR23 of DN mice was knocked down by injecting LV3‐shRNA into tail vein. Inflammation, physiological and pathological changes in each group was measured. GEnCs were cultured as an in vitro model to study potential signalling pathways. Results showed that expression of chemerin, ChemR23 and inflammatory factors increased in DN patients and mice. LV3‐shRNA alleviated renal damage and inflammation in DN mice. GEnCs stimulated by glucose showed increased chemerin, ChemR23 and inflammatory factors and decreased endothelial marker CD31. Both LV3‐shRNA and SB203580 (p38 MAPK inhibitor) attenuated chemerin‐induced inflammation and injury in GEnCs. Taken together, chemerin/ChemR23 axis played an important role in endothelial injury and inflammation in DN via the p38 MAPK signalling pathway. Suppression of ChemR23 alleviated DN damage.  相似文献   

5.
Viral diseases of the respiratory tract, which include influenza pandemic, children acute bronchiolitis, and viral pneumonia of the elderly, represent major health problems. Plasmacytoid dendritic cells play an important role in anti-viral immunity, and these cells were recently shown to express ChemR23, the receptor for the chemoattractant protein chemerin, which is expressed by epithelial cells in the lung. Our aim was to determine the role played by the chemerin/ChemR23 system in the physiopathology of viral pneumonia, using the pneumonia virus of mice (PVM) as a model. Wild-type and ChemR23 knock-out mice were infected by PVM and followed for functional and inflammatory parameters. ChemR23(-/-) mice displayed higher mortality/morbidity, alteration of lung function, delayed viral clearance and increased neutrophilic infiltration. We demonstrated in these mice a lower recruitment of plasmacytoid dendritic cells and a reduction in type I interferon production. The role of plasmacytoid dendritic cells was further addressed by performing depletion and adoptive transfer experiments as well as by the generation of chimeric mice, demonstrating two opposite effects of the chemerin/ChemR23 system. First, the ChemR23-dependent recruitment of plasmacytoid dendritic cells contributes to adaptive immune responses and viral clearance, but also enhances the inflammatory response. Second, increased morbidity/mortality in ChemR23(-/-) mice is not due to defective plasmacytoid dendritic cells recruitment, but rather to the loss of an anti-inflammatory pathway involving ChemR23 expressed by non-leukocytic cells. The chemerin/ChemR23 system plays important roles in the physiopathology of viral pneumonia, and might therefore be considered as a therapeutic target for anti-viral and anti-inflammatory therapies.  相似文献   

6.
Chemerin, a chemoattractant protein, is involved in endothelial dysfunction and vascular inflammation in pathological conditions. In a recent study, we observed the upregulation of chemerin in endothelial cells following in vitro treatment with Treponema pallidum. Here, we investigated the role of chemerin in endothelial cells activation induced by the T. pallidum predicted membrane protein Tp0965. Following stimulation of human umbilical vein endothelial cells (HUVECs) with Tp0965, chemerin and its receptor chemerin receptor 23 (ChemR23) were upregulated, companied with elevated expression of Toll-like receptor 2. Furthermore, chemerin from HUVECs activated endothelial cells via chemerin/ChemR23 signaling in an autocrine/paracrine manner, characterized by upregulated expression of intercellular adhesion molecule 1, E-selectin, and matrix metalloproteinase-2. Activation of endothelial cells depended on the mitogen-activated protein kinase signaling pathway. In addition, Tp0965-induced chemerin promoted THP-1-derived macrophages migration to endothelial cells, also via the chemerin/ChemR23 pathway. The RhoA/ROCK signaling pathway was also involved in THP-1-derived macrophages migration in response to chemerin/ChemR23. Our results highlight the role of Tp0965-induced chemerin in endothelial cells dysfunction, which contributes to the immunopathogenesis of vascular inflammation of syphilis.  相似文献   

7.
Chemerin是2007年新确认的一种脂肪因子,其主要功能受体为ChemR23。近期研究发现chemerin可能是联系肥胖、糖尿病及动脉粥样硬化的潜在因子,有望为糖尿病及其血管并发症的预防及治疗提供新的靶点。然而,chemerin及其受体ChemR23参与糖尿病及其大血管病变的具体机制尚不明确。本文将就目前研究中chemerin及其受体ChemR23与糖尿病及其大血管病变的关系作一综述,并从免疫及炎症反应、氧化应激、自噬、糖脂代谢和胰岛素抵抗等方面,分析chemerin分别对巨噬细胞、血管内皮细胞、脂肪细胞及骨骼肌细胞的影响,从而进一步阐述chemerin及其受体ChemR23参与糖尿病及其大血管病变的具体生物学机制。  相似文献   

8.
Chemerin acting via its distinct G protein-coupled receptor CMKLR1 (ChemR23), is a novel adipokine, circulating levels of which are raised in inflammatory states. Chemerin shows strong correlation with various facets of the metabolic syndrome; these states are associated with an increased incidence of cardiovascular disease (CVD) and dysregulated angiogenesis. We therefore, investigated the regulation of ChemR23 by pro-inflammatory cytokines and assessed the angiogenic potential of chemerin in human endothelial cells (EC). We have demonstrated the novel presence of ChemR23 in human ECs and its significant up-regulation (< 0.001) by pro-inflammatory cytokines, TNF-α, IL-1β and IL-6. More importantly, chemerin was potently angiogenic, as assessed by conducting functional in-vitro angiogenic assays; chemerin also dose-dependently induced gelatinolytic (MMP-2 & MMP-9) activity of ECs (< 0.001). Furthermore, chemerin dose-dependently activated PI3K/Akt and MAPKs pathways (< 0.01), key angiogenic and cell survival cascades. Our data provide the first evidence of chemerin-induced endothelial angiogenesis and MMP production and activity.  相似文献   

9.
Chemerin is a chemokine that, through the engagement of its counter-receptor, ChemR23, attracts pro-inflammatory cells. However, chemerin has been shown to play other functions and a recent study by Berg and colleagues demonstrates that chemerin/ChemR23 is a system beyond chemokines. Human articular chondrocytes produce chemerin and express ChemR23, and upon stimulation with recombinant chemerin increase the production of pro-catabolic cytokines and metalloproteinases. The latter are up-regulated in osteoarthritic cartilage and cause extracellular matrix breakdown. Since an increase of chemerin in fat tissue and serum of obese patients has been reported, this new feature of chemerin may represent a functional link between obesity and osteoarthritis.  相似文献   

10.
Chronic obstructive pulmonary disease is mainly triggered by cigarette smoke (CS) and progresses even after smoking cessation. CS induces an exaggerated influx of inflammatory cells to the bronchoalveolar space and lung parenchyma, likely resulting from a complex interplay between chemoattractants and their respective receptors. In a murine CS model of chronic obstructive pulmonary disease, we studied the importance of chemokine-like receptor ChemR23 for the induction and resolution of inflammation in CS-exposed lungs. Subacute and chronic CS exposure increased protein levels of the ChemR23 ligand and chemoattractant, chemerin, in bronchoalveolar lavage (BAL) fluid of wild-type (WT) mice. Moreover, the proinflammatory chemokines CXCL1, CCL2, and CCL20 were increased in the airways of CS-exposed WT mice, accompanied by a massive accumulation of inflammatory neutrophils and monocytes, CD11b(hi)CD103(-) and CD11b(lo)CD103(+) dendritic cells (DCs), and CD4(+) and CD8(+) T cells. The lung parenchyma of WT mice was infiltrated with inflammatory neutrophils, CD11b(hi)CD103(-) DCs, and activated CD4(+) T cells after CS exposure. CS-induced inflammation was severely attenuated in BAL fluid and lungs of ChemR23 knockout mice with regard to the induction of inflammatory chemokines and the recruitment of inflammatory cells. Neutrophils and CD8(+) T cells persisted in the airways of WT mice, as did the airway-derived conventional DCs in the mediastinal lymph nodes, for at least 14 d after smoking cessation. In the BAL fluid of CS-exposed ChemR23 knockout mice, there was a remarkable delayed accumulation of T cells 14 d after the final exposure. Our data support a role for ChemR23 in directing innate and adaptive immune cells to CS-exposed lungs.  相似文献   

11.
Dendritic cells and macrophages are professional APCs that play a central role in initiating immune responses, linking innate and adaptive immunity. Chemerin is a novel chemoattractant factor that specifically attracts APCs through its receptor ChemR23. Interestingly, chemerin is secreted as a precursor of low biological activity, prochemerin, which upon proteolytic removal of a C-terminal peptide, is converted into a potent and highly specific agonist of its receptor. Given the fact that APCs are often preceded by polymorphonuclear cells (PMN) in inflammatory infiltrates, we hypothesized that PMN could mediate chemerin generation. We demonstrate here that human degranulated PMNs release proteases that efficiently convert prochemerin into active chemerin. The use of specific protease inhibitors allowed us to identify the neutrophil serine proteases cathepsin G and elastase as responsible for this process. Mass spectrometry analysis of processed prochemerin showed that each protease generates specifically a distinct form of active chemerin, differing in their C terminus and initially identified in human inflammatory fluids. These findings strongly suggest that bioactive chemerin generation takes place during the early stages of inflammation, underscoring the functional contribution of chemerin as a bridge between innate and adaptive immunity.  相似文献   

12.
Chemokine-like receptor 1 (CMKLR1), also known as ChemR23, and chemokine (C–C motif) receptor-like 2 (CCRL2) are 7-transmembrane receptors that were cloned in the late 1990s based on their homology to known G-protein-coupled receptors. They were previously orphan receptors without any known biological roles; however, recent studies identified ligands for these receptors and their functions have begun to be unveiled. The plasma protein-derived chemoattractant chemerin is a ligand for CMKLR1 and activation of CMKLR1 with chemerin induces the migration of macrophages and dendritic cells (DCs) in vitro, suggesting a proinflammatory role. However, in vivo studies using CMKLR-deficient mice suggest an anti-inflammatory role for this receptor, possibly due to the recruitment of tolerogenic plasmacytoid DCs. Chemerin/CMKLR1 interaction also promotes adipogenesis and angiogenesis. The anti-inflammatory lipid mediator, resolving E1, is another CMKLR1 ligand and it inhibits leukocyte infiltration and proinflammatory gene expression. These divergent results suggest that CMKLR1 is a multifunctional receptor.The chemokine CCL5 and CCL19 are reported to bind to CCRL2. Like Duffy antigen for chemokine receptor (DARC), D6 and CCX-CKR, CCRL2 does not signal, but it constitutively recycles, potentially reducing local concentration of CCL5 and CCL19 and subsequent immune responses. Surprisingly, chemerin, a ligand for CMKLR1, is a ligand for CCRL2. CCRL2 binds chemerin and increases local chemerin concentration to efficiently present it to CMKLR1 on nearby cells, providing a link between CCRL2 and CMKLR1. Although these findings suggest an anti-inflammatory role, a recent study using CCRL2-deficient mice indicates a proinflammatory role; thus, CCRL2 may also be multifunctional. Further studies using CMKLR1- or CCRL2-deficient mice are needed to further define the role of these receptors in immune responses and other cellular processes.  相似文献   

13.
Stromal cells such as myofibroblasts influence tumor progression. The mechanisms are unclear but may involve effects on both tumor cells and recruitment of bone marrow-derived mesenchymal stromal cells (MSCs) which then colonize tumors. Using iTRAQ and LC-MS/MS we identified the adipokine, chemerin, as overexpressed in esophageal squamous cancer associated myofibroblasts (CAMs) compared with adjacent tissue myofibroblasts (ATMs). The chemerin receptor, ChemR23, is expressed by MSCs. Conditioned media (CM) from CAMs significantly increased MSC cell migration compared to ATM-CM; the action of CAM-CM was significantly reduced by chemerin-neutralising antibody, pretreatment of CAMs with chemerin siRNA, pretreatment of MSCs with ChemR23 siRNA, and by a ChemR23 receptor antagonist, CCX832. Stimulation of MSCs by chemerin increased phosphorylation of p42/44, p38 and JNK-II kinases and inhibitors of these kinases and PKC reversed chemerin-stimulated MSC migration. Chemerin stimulation of MSCs also induced expression and secretion of macrophage inhibitory factor (MIF) that tended to restrict migratory responses to low concentrations of chemerin but not higher concentrations. In a xenograft model consisting of OE21 esophageal cancer cells and CAMs, homing of MSCs administered i.v. was inhibited by CCX832. Thus, chemerin secreted from esophageal cancer myofibroblasts is a potential chemoattractant for MSCs and its inhibition may delay tumor progression.  相似文献   

14.
We have demonstrated previously that IFN-γ plays a protective role in the initiation of chronic intestinal inflammation through attenuation of Toll-like receptor-mediated IL-23 induction in macrophages. Here, an interferon-stimulated response element (ISRE) is identified in a region of conserved nucleotide sequences in the Il23a promoter. This ISRE mediated, in part, Il23a promoter induction by LPS and inhibition of LPS-induced activity by IFN-γ. LPS and IFN-γ recruit interferon regulatory factors (IRFs) to the Il23a ISRE in murine bone marrow-derived macrophages (BMMs). Functionally, IRF-1 is a negative regulator of Il23a in LPS-stimulated BMMs. IRF-1(-/-) BMMs demonstrated enhanced LPS-induced Il23a expression compared with WT BMMs. Moreover, IRF-1 deficiency resulted in prolonged occupancy of RelA on the Il23a promoter. Consequently, IRF-1(-/-) mice were more susceptible to colonic injury by trinitrobenzenesulfonic acid, and IL-10/IRF-1 double-deficient (IL-10/IRF-1(-/-)) mice demonstrated more severe colonic inflammation compared with IL-10(-/-) mice. The severity of colitis in both models correlated with increased colonic IL-23. CD11b(+) lamina propria mononuclear cells, comprising predominantly macrophages, were identified as the major source of IL-23 in colitis-prone mice. Basal and heat-killed Escherichia coli-stimulated levels of Il23a were increased in IL-10/IRF-1(-/-) compared with WT and IL-10(-/-) colonic CD11b(+) lamina propria mononuclear cells. In conclusion, these experiments characterize IRF-ISRE interactions on the Il23a promoter, which have in vivo relevance as a homeostatic checkpoint in chronic intestinal inflammation.  相似文献   

15.
Chemerin is an attractant for cells that express the serpentine receptor CMKLR1, which include immature plasmacytoid dendritic cells (pDC) and macrophages. Chemerin circulates in the blood where it exhibits low biological activity, but upon proteolytic cleavage of its C terminus, it is converted to a potent chemoattractant. Enzymes that contribute to this conversion include host serine proteases of the coagulation, fibrinolytic, and inflammatory cascades, and it has been postulated that recruitment of pDC and macrophages by chemerin may serve to balance local tissue immune and inflammatory responses. In this work, we describe a potent, pathogen-derived proteolytic activity capable of chemerin activation. This activity is mediated by staphopain B (SspB), a cysteine protease secreted by Staphylococcus aureus. Chemerin activation is triggered by growth medium of clinical isolates of SspB-positive S. aureus, but not by that of a SspB(null) mutant. C-terminal processing by SspB generates a chemerin isoform identical with the active endogenous attractant isolated from human ascites fluid. Interestingly, SspB is a potent trigger of chemerin even in the presence of plasma inhibitors. SspB may help direct the recruitment of specialized host cells, including immunoregulatory pDC and/or macrophages, contributing to the ability of S. aureus to elicit and maintain a chronic inflammatory state.  相似文献   

16.
Recent studies have shown that heteromerization of the chemokine receptors CCR2, CCR5 and CXCR4 is associated to negative binding cooperativity. In the present study, we build on these previous results, and investigate the consequences of chemokine receptor heteromerization with ChemR23, the receptor of chemerin, a leukocyte chemoattractant protein structurally unrelated to chemokines. We show, using BRET and HTRF assays, that ChemR23 forms homomers, and provide data suggesting that ChemR23 also forms heteromers with the chemokine receptors CCR7 and CXCR4. As previously described for other chemokine receptor heteromers, negative binding cooperativity was detected between ChemR23 and chemokine receptors, i.e. the ligands of one receptor competed for the binding of a specific tracer of the other. We also showed, using mouse bone marrow-derived dendritic cells prepared from wild-type and ChemR23 knockout mice, that ChemR23-specific ligands cross-inhibited CXCL12 binding on CXCR4 in a ChemR23-dependent manner, supporting the relevance of the ChemR23/CXCR4 interaction in native leukocytes. Finally, and in contrast to the situation encountered for other previously characterized CXCR4 heteromers, we showed that the CXCR4-specific antagonist AMD3100 did not cross-inhibit chemerin binding in cells co-expressing ChemR23 and CXCR4, demonstrating that cross-regulation by AMD3100 depends on the nature of receptor partners with which CXCR4 is co-expressed.  相似文献   

17.
Upon LPS exposure, mononuclear phagocytes produce TNF-alpha and IL-10, two cytokines with pro- and anti-inflammatory activities, respectively. We previously described that murine resident alveolar macrophages, which play a central role in the immunosurveillance of the lung alveoli, do not synthesize IL-10 in vivo or in vitro when exposed to LPS. In the present report we demonstrate that during lung inflammation induced by the intranasal administration of LPS, bronchoalveolar cells collected between days 3 and 5 are able to synthesize IL-10 when exposed to LPS. We also show that depletion of resident alveolar macrophages by an intratracheal instillation of liposome-encapsulated clodronate is followed by subsequent replenishment of the airspaces by mononuclear phagocytes. This is accompanied by the transient competence of cells for IL-10 production. The cell capacity to produce IL-10 is evident up to 3 days and then decreases. This led us to hypothesize that the alveolar environment contains a down-regulator of LPS-induced IL-10 synthesis by recently emigrating mononuclear phagocytes. We show that the surfactant protein A, an airspace protein that has known immunomodulatory activities, dramatically inhibits LPS-induced IL-10 formation by bone marrow-derived macrophages. These data show a difference between resident and inflammatory macrophages with respect to IL-10 synthesis. Moreover, this study highlights for the first time the inhibitory role of surfactant protein A in the anti-inflammatory activity of macrophages through inhibition of IL-10 production.  相似文献   

18.
Chemerin is a novel chemokine that binds to the G protein-coupled receptor (GPCR) ChemR23, also known as chemokine-like receptor 1 (CMKLR1). It is secreted as a precursor and executes pro-inflammatory functions when the last six amino acids are removed from its C-terminus by serine proteases. After maturation, Chemerin attracts dendritic cells and macrophages through binding to ChemR23. We report a new method for expression and purification of mature recombinant human Chemerin (rhChemerin) using a prokaryotic system. After being expressed in bacteria, rhChemerin in inclusion bodies was denatured using 6 M guanidine chloride. Soluble rhChemerin was prepared by the protein-specific renaturation solution under defined conditions. It was subsequently purified using ion-exchange columns to more than 95% purity with endotoxin level <1.0 EU/μg. We further demonstrated its biological activities for attracting migration of human dendritic cells and murine macrophages in vitro using established chemotaxis assays.  相似文献   

19.
Obesity is an alarming primary health problem and is an independent risk factor for type II diabetes, cardiovascular diseases, and hypertension. Although the pathologic mechanisms linking obesity with these co-morbidities are most likely multifactorial, increasing evidence indicates that altered secretion of adipose-derived signaling molecules (adipokines; e.g. adiponectin, leptin, and tumor necrosis factor alpha) and local inflammatory responses are contributing factors. Chemerin (RARRES2 or TIG2) is a recently discovered chemoattractant protein that serves as a ligand for the G protein-coupled receptor CMKLR1 (ChemR23 or DEZ) and has a role in adaptive and innate immunity. Here we show an unexpected, high level expression of chemerin and its cognate receptor CMKLR1 in mouse and human adipocytes. Cultured 3T3-L1 adipocytes secrete chemerin protein, which triggers CMKLR1 signaling in adipocytes and other cell types and stimulates chemotaxis of CMKLR1-expressing cells. Adenoviral small hairpin RNA targeted knockdown of chemerin or CMKLR1 expression impairs differentiation of 3T3-L1 cells into adipocytes, reduces the expression of adipocyte genes involved in glucose and lipid homeostasis, and alters metabolic functions in mature adipocytes. We conclude that chemerin is a novel adipose-derived signaling molecule that regulates adipogenesis and adipocyte metabolism.  相似文献   

20.
Scavenger receptor BI (SR-BI), an HDL receptor, plays a key role in reverse cholesterol transport. In mice, disruption of SR-BI results in hypersensitivity to lipopolysaccharide (LPS) and bacteria-induced septic shock due to adrenal insufficiency and abnormal hepatic pathogen clearance. In this study, we identify an anti-inflammatory role of macrophage SR-BI. Using bone marrow transplantation, we report an enhanced pro-inflammatory response to LPS in wild-type (WT) mice receiving SR-BI-null compared with WT bone marrow cells and a reduced response in SR-BI-null mice receiving WT compared with SR-BI-null cells. Although significant, SR-BI deficiency limited to bone marrow-derived cells promoted a relatively modest enhancement of the inflammatory response to LPS in mice compared with the effect of whole-body SR-BI deletion. Consistent with earlier findings, SR-BI-null primary macrophages exhibited a greater inflammatory cytokine response to LPS than control macro phages. In addition, we showed that overexpression of SR-BI in J774 macrophages attenuated the inflammatory response to LPS. The LPS-induced cytokine expression in both WT and SR-BI-null macrophages was dependent not only on NFκB as previously reported but also on JNK and P38 cell signaling pathways. The increased inflammatory signaling in SR-BI-null cells was not related to alterations in cellular cholesterol content. We conclude that SR-BI plays an important function in regulating the macrophage inflammatory response to LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号