首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of the Ecodam methylase with different substrates were investigated among them the double- and single-stranded DNAs and synthetic oligonucleotides containing some defects in the GATC sequence. These defects were:nick, the absence of one internucleotide phosphate of nucleotide; partially single-stranded form on the recognition site etc. It was demonstrated that the presence of both G . A-dinucleotides in the recognition site is necessary for productive enzyme-substrate interaction. The absence of T and/or C residues is less dramatic for methylase activity. The Ecodam methylase is capable to modify the single-stranded oligonucleotides by forming the double-stranded structure in the symmetric recognition sequences GATC.  相似文献   

2.
We have recently undertaken a systematic structural analysis of fully protected tetrapeptides containing at the N- and C-terminus either homo- or heterochiral amino acids, spaced by an achiral dipeptide segment. The interest for this class of peptides derives from the observation that, on reverse-phase (HPLC), the homo- and heterochiral sequences have a markedly different retention times. The diastereomeric sequences, namely Z-(L/D)-Val-X-Y-L-Phe-OMe (X = Sar, Gly, Ac3c, Aib, Ac5c, Ac6c, Deg, Dpg, Dbu, Dip, Dph; Y = Sar, Gly, Ac3c, Aib, Ac5c, Ac6c) show different overall hydrophobicity attributed to a different three-dimensional structure that also depends on the X-Y segment. Therefore, following preliminary studies in solution, we report here the detailed x-ray analysis of the tetrapeptide Z-D-Val-Ac6c-Gly-L-Phe-OMe in order to understand the structural features governing the overall hydrophobicity of linear fully protected tetrapeptides.  相似文献   

3.
《Biophysical journal》2022,121(11):2127-2134
Measuring the mechanical properties of single-stranded DNA (ssDNA) is a complex challenge that has been addressed lately by different methods. We measured the persistence length of ring ssDNA using a combination of a special DNA origami structure, a self-avoiding ring polymer simulation model, and nonparametric estimation statistics. The method overcomes the complexities set forth by previously used methods. We designed the DNA origami nano structures and measured the ring ssDNA polymer conformations using atomic force microscopy. We then calculated their radius of gyration, which was used as a fitting parameter for finding the persistence length. As there is no simple formulation for the radius of gyration distribution, we developed a simulation program consisting of a self-avoiding ring polymer to fit the persistence length to the experimental data. ssDNA naturally forms stem-loops, which should be taken into account in fitting a model to the experimental measurement. To overcome that hurdle, we found the possible loops using minimal energy considerations and used them in our fitting procedure of the persistence length. Due to the statistical nature of the loops formation, we calculated the persistence length for different percentages of loops that are formed. In the range of 25–75% loop formation, we found the persistence length to be 1.9–4.4 nm, and for 50% loop formation we get a persistence length of 2.83 ± 0.63 nm. This estimation narrows the previously known persistence length and provides tools for finding the conformations of ssDNA.  相似文献   

4.
5.
6.
We report that oligodeoxynucleotides which form stem-loop hairpin structures and which have pyrimidine-rich loops can form strong complexes with complementary single-stranded DNA sequences. Stem-loop oligonucleotides were constructed with a 25-nt T-rich loop and with variable Watson-Crick stems. The complexes of these oligomers with the sequence dA8 were studied by thermal denaturation. Evidence is presented that the complexes are one-to-one, bimolecular complexes in which the pyrimidine loop bases comprise the outer strands in a pyr.pur.pyr triplex, in effect chelating the purine strand in the center of the loop. Melting temperatures for the loop complexes are shown to be up to 29 degrees C higher than Watson-Crick duplex of the same length. It is shown that the presence of a stem increases stability of the triplex relative to an analogous oligomer without a stem. The effect of stem length on the stability of such a complex is examined. Such hairpin oligomers represent a new approach to the sequence-specific binding of single-stranded RNA and DNA. In addition, the finding raises the possibility that such a complex may exist in natural RNA folded sequences.  相似文献   

7.
DNA methylation and the frequency of CpG in animal DNA.   总被引:120,自引:35,他引:85       下载免费PDF全文
An analysis of nearest neighbour dinucleotide frequencies and the level of DNA methylation in animals strongly supports the suggestion that 5-methylcytosine (5mC) tends to mutate abnormally frequently to T. This tendency is the likely cause of the CpG deficiency in heavily methylated genomes.  相似文献   

8.
Aberrant methylation of promoter CpG islands is causally linked with a number of inherited syndromes and most sporadic cancers, and may provide valuable diagnostic and prognostic biomarkers. In this report, we describe an approach to simultaneous analysis of multiple CpG islands, where methylation-specific oligonucleotide probes are joined by ligation and subsequently amplified by polymerase chain reaction (PCR) when hybridized in juxtaposition on bisulfite-treated DNA. Specificity of the ligation reaction is achieved by (i) using probes containing CpGpCpG (for methylated sequences) or CpApCpA (for unmethylated sequences) at the 3′ ends, (ii) including three or more probes for each target, and (iii) using a thermostable DNA ligase. The external probes carry universal tails to allow amplification of multiple ligation products using a common primer pair. As proof-of-principle applications, we established duplex assays to examine the FMR1 promoter in individuals with fragile-X syndrome and the SNRPN promoter in individuals with Prader-Willi syndrome or Angelman syndrome, and a multiplex assay to simultaneously detect hypermethylation of seven genes (ID4, APC, RASSF1A, CDH1, ESR1, HIN1 and TWIST1) in breast cancer cell lines and tissues. These data show that ligation of oligonucleotide probes hybridized to bisulfite-treated DNA is a simple and cost-effective approach to analysis of CpG methylation.  相似文献   

9.
DNA methylation is an important epigenetic mark that is known to induce chromatin condensation and gene silencing. We used a time-domain fluorescence lifetime measurement to quantify the effects of DNA hypermethylation on the conformation and dynamics of a nucleosome. Nucleosomes reconstituted on an unmethylated and a methylated DNA both exhibit dynamic conformations under physiological conditions. The DNA end breathing motion and the H2A-H2B dimer destabilization dominate the dynamic behavior of nucleosomes at low to medium ionic strength. Extensive DNA CpG methylation, surprisingly, does not help to restrain the DNA breathing motion, but facilitates the formation of a more open nucleosome conformation. The presence of the divalent cation, Mg2+, essential for chromatin compaction, and the methyl donor molecule SAM, required for DNA methyltransferase reaction, facilitate the compaction of both types of nucleosomes. The difference between the unmethylated and the methylated nucleosome persists within a broad range of salt concentrations, but vanishes under high magnesium concentrations. Reduced DNA backbone rigidity due to the presence of methyl groups is believed to contribute to the observed structural and dynamic differences. The observation of this study suggests that DNA methylation alone does not compact chromatin at the nucleosomal level and provides molecular details to understand the regulatory role of DNA methylation in gene expression.  相似文献   

10.
11.
Solid-state deuterium NMR is used to investigate perturbations of the local, internal dynamics in the EcoRI restriction binding site, -GAATTC- induced by cytidine methylation. Methylation of the cytidine base in this sequence is known to suppress hydrolysis by the EcoRI restriction enzyme. Previous solid-state deuterium NMR studies have detected large amplitude motions of the phosphate-sugar backbone at the AT-CG junction of the unmethylated DNA sequence. This study shows that methylation of the cytidine base in a CpG dinucleotide reduces the amplitudes of motions of the phosphate-sugar backbone. These observations suggest a direct link between suppression of the amplitudes of localized, internal motions of the sugar-phosphate backbone of the DNA and inhibition of restriction enzyme cleavage.  相似文献   

12.
C Baldari  G Cesareni 《Gene》1985,35(1-2):27-32
We describe the construction and properties of pEMBLY plasmids. They belong to a new family of yeast shuttle vectors which are derived from plasmid vector pEMBL9 and offer the following improvement: relatively small size; large number of cloning sites; screening for insert-containing plasmids on indicator plates; different combinations of genes which complement auxotrophic deficiencies and sequences that support DNA replication in Saccharomyces cerevisiae; and ability to isolate the plasmid DNA in single-stranded (ss) form. The yeast S. cerevisiae can be efficiently transformed by these plasmids in both the ss and double-stranded (ds) forms. Finally, the presence of the phage f1 intergenic region allows one to obtain the cloned sequences in the ss form upon infection with the wild-type ss phage [Dotto et al., Virology 114 (1981) 463-473].  相似文献   

13.
14.
Single-stranded DNA (ssDNA) oligomers were compared to synthetic RNA oligomers in their ability to program E. coli ribosomes in vitro. AUG and dATG-containing oligomers promoted the non-enzymatic binding of fmet-tRNA to ribosomes, with similar dependence on time and magnesium concentration; only at 10 mM Mg++ or at low oligomer concentration was RNA slightly preferred in complex formation. These initiation complexes were biologically active in that fmet-tRNA, bound in response to ssDNA or RNA, was fully reactive with puromycin. While dAUG could not function as an initiation codon, p-dAUG functioned as well as AUG or dATG. However, dUAA and p-dUAA could not replace UAA in directing release-factor (RF) activity, and dTAA functioned only to a slight extent. Release factors had specificity for termination complexes containing dATGTAA, dATGTAG, or dATGTGA. At Mg++ concentrations of 15 mM or higher, these hexamers directed peptidyl transferase-dependent fmet-tRNA hydrolysis in the absence of RF. We suggest this RF-independent activation of peptidyl transferase as a unique system for studying the mechanism of termination. Overall, these results indicate that ssDNA can be used in place of RNA for certain studies of protein synthesis.  相似文献   

15.
A Thain  O Jenkins  A R Clarke    K Gaston 《Journal of virology》1996,70(10):7233-7235
CpG methylation of the human papillomavirus upstream regulatory region has previously been shown to reduce virus promoter activity. Here, we demonstrate that methylation of the CpG dinucleotides contained within the binding site of the human papillomavirus type 16 E2 protein has a direct effect on the interaction of this protein with DNA. Methylation of both CpG dinucleotides within the E2 site abolishes the binding of E2.  相似文献   

16.
A method for synthesizing DNA from 40-mer oligonucleotides, which we used to generate a 32-kb DNA fragment, is explained. DNA sequences are synthesized as approximately 500 bp fragments (synthons) in a two-step PCR reaction and cloned using ligation-independent cloning (LIC). Synthons are then assembled into longer full-length sequences in a stepwise manner. By initially synthesizing smaller fragments (synthons), the number of clones sequenced is low compared with synthesizing complete multi-kilobase DNA sequences in a single step. LIC eliminates the need for purification of fragments before cloning, making the process amenable to high-throughput operation and automation. Type IIs restriction enzymes allow seamless assembly of synthons without placing restrictions on the sequence being synthesized. Synthetic fragments are assembled in pairs to generate the final construct using vectors that allow selection of desired clones with two unique antibiotic resistance markers, and this eliminates the need for purification of fragments after digestion with restriction endonucleases.  相似文献   

17.
Wilson A  Pitt B  Li S 《Bioscience reports》2002,22(2):309-322
Unmethylated CpG in bacterial DNA has recently been recognized as a danger signal to the mammalian immune system. This CpG signal can be greatly amplified when DNA is delivered via a lipidic vector. The CpG effects are affected by the administration route, and can be either beneficial or harmful. In this review, we will summarize our current understanding about the mechanism of action of the immunostimulatory motifs. Emphasis will be placed on the discussion of the complicated roles of CpG when CpG DNA or oligonucleotides are administered in vivo using liposomes as a delivery vehicle.  相似文献   

18.
Lu LY  Huen MS  Tai AC  Liu DP  Cheah KS  Huang JD 《BioTechniques》2008,44(2):217-20, 222, 224
The lamda phage Red recombination system has been used to modify plasmid, bacterial artificial chromosome (BAC), and chromosomal DNA in a highly precise and versatile manner Linear double-stranded DNA fragments or synthetic single-stranded oligonucleotides (SSOs) with short flanking homologies (<50 bp) to the target loci can be used as substrates to direct changes, including point mutations, insertions, and deletions. In attempts to explore mechanistic bases under this recombination process, we and others have previously identified factors that influence SSO-mediated single base substitutions. In this report, we focus our study on SSO-mediated deletion on plasmids. We found that SSOs as short as 63 bp were sufficient to mediate deletion as long as 2 kb with efficiency higher than 1%. Strand bias was consistently observed, and SSOs with sequences identical to the nascent lagging strand during replication always resulted in higher efficiency. Unlike SSO-mediated single nucleotide substitution, homology on each side of SSO flanking the fragment to be deleted was important for successful deletion, and abolishing the host methyl-directed mismatch repair (MMR) system did not lead to detectable changes in deletion efficiency. Finally, we showed that by optimizing its design, SSO-mediated deletion was efficient enough to make it possible to manipulate plasmids without selectable markers.  相似文献   

19.
Gene editing directed by modified single-stranded DNA oligonucleotides has been used to alter a single base pair in a variety of biological systems. It is likely that gene editing is facilitated by the direct incorporation of the oligonucleotides via replication and/or by direct conversion, most likely through the DNA mismatch repair pathway. The phenomenon of strand bias, however, as well as its importance to the gene editing reaction itself, has yet to be elucidated in terms of mechanism. We have taken a reductionist approach by using a genetic readout in Eschericha coli and a plasmid-based selectable system to evaluate the influence of strand bias on the mechanism of gene editing. We show that oligonucleotides (ODNs) designed to anneal to the lagging strand generate 100-fold greater 'editing' efficiency than 'those that anneal to' the leading strand. The majority of editing events (~70%) occur by the incorporation of the ODN during replication within the lagging strand. Conversely, ODNs that anneal to the leading strand generate fewer editing events although this event may follow either the incorporation or direct conversion pathway. In general, the influence of DNA replication is independent of which ODN is used suggesting that the importance of strand bias is a reflection of the underlying mechanism used to carry out gene editing.  相似文献   

20.
A targeted ss (single stranded) DNA cleavage technique is reported which involves the use of synthetic oligomers complementary to the ss M13 DNA polylinker. BamHI, SmaI, and KpnI restriction enzymes were tested with a partial duplex DNA formed from ss M13 DNA and a nested series of fragments derived from a synthetic 21-mer which were complementary to the polylinker region. These enzymes require up to two flanking nucleotides in addition to the hexameric recognition site for efficient cleavage. This technique could be useful for effecting unique cleavages of DNA with enzymes which generally give a large number of fragments and for strategies of ss DNA manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号