首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Obestatin is a recently discovered peptide produced in the stomach, which was originally described to suppress food intake and decrease body weight in experimental animals. We investigated fasting plasma obestatin levels in normal weight, obese and anorectic women and associations of plasma obestatin levels with anthropometric and hormonal parameters. Hormonal (obestatin, ghrelin, leptin, insulin) and anthropometric parameters and body composition were examined in 15 normal weight, 21 obese and 15 anorectic women. Fasting obestatin levels were significantly lower in obese than in normal weight and anorectic women, whereas ghrelin to obestatin ratio was increased in anorectic women. Compared to leptin, only minor differences in plasma obestatin levels were observed in women who greatly differed in the amount of fat stores. However, a negative correlation of fasting obestatin level with body fat indexes might suggest a certain role of obestatin in the regulation of energy homeostasis. A significant relationship between plasma obestatin and ghrelin levels, independent of anthropometric parameters, supports simultaneous secretion of both hormones from the common precursor. Lower plasma obestatin levels in obese women compared to normal weight and anorectic women as well as increased ghrelin to obestatin ratio in anorectic women might play a role in body weight regulation in these pathologies.  相似文献   

2.
Obestatin and ghrelin are two peptides derived from the same prohormone. It is well established that ghrelin is produced by endocrine cells in the gastric mucosa. However, the distribution of human obestatin immunoreactive cells is not thoroughly characterized. A polyclonal antibody that specifically recognizes human obestatin was produced. Using this antibody and a commercial antibody vs ghrelin, the distribution of obestatin and ghrelin immunoreactive cells was determined in a panel of human tissues using immunohistochemistry. The two peptides were detected in the mucosa of the gastrointestinal tract, from cardia to ileum, and in the pancreatic islets. Interestingly, epithelial cells in the ducts of mammary glands showed distinct immunoreactivity for both ghrelin and obestatin. By double immunofluorescence microscopy, it was shown that all detected cells were immunoreactive for both peptides. Furthermore, the subcellular localization of obestatin and ghrelin was essentially identical, indicating that obestatin and ghrelin are stored in the same secretory vesicles.  相似文献   

3.
Obestatin was identified as a brain/gut peptide hormone encoded by the ghrelin gene and found to interact with the G protein-coupled receptor, GPR39. We investigated target cells for obestatin based on induction of an early-response gene c-fos in different tissues. After ip injection of obestatin, c-fos staining was found in the nuclei of gastric mucosa, intestinal villi, white adipose tissues, hepatic cords, and kidney tubules. Immunohistochemical analyses using GPR39 antibodies further revealed cytoplasmic staining in these tissues. In cultured 3T3-L1 cells, treatment with obestatin, but not motilin, induced c-fos expression. In these preadipocytes, treatment with obestatin also stimulated ERK1/2 phosphorylation. Because phenotypes of GPR39 null mice are partially consistent with a role of GPR39 in mediating obestatin actions, we hypothesized that inconsistencies on the binding of iodinated obestatin to GPR39 are due to variations in the bioactivity of iodinated obestatin. We obtained monoiodoobestatin after HPLC purification and demonstrated its binding to jejunum, stomach, ileum, pituitary, and white adipose tissue. Furthermore, human embryonic kidney 293T cells transfected with plasmids encoding human or mouse GPR39 or a human GPR39 isoform, but not the ghrelin receptor, exhibited high-affinity binding to monoiodoobestatin. Binding studies using jejunum homogenates and recombinant GPR39 revealed obestatin-specific displacement curves. Furthermore, treatment with obestatin induced c-fos expression in gastric mucosa of wild-type, but not GPR39 null, mice, underscoring a mediating role of this receptor in obestatin actions. The present findings indicate that obestatin is a metabolic hormone capable of binding to GPR39 to regulate the functions of diverse gastrointestinal and adipose tissues.  相似文献   

4.
Derived from the same prohormone, obestatin has been reported to exert effects on food intake that oppose those of ghrelin. The obestatin receptor GPR39 is present in brain and pituitary gland. Since the gene encoding those two peptides is expressed also in those tissues, we examined further the possible actions of obestatin in vivo and in vitro. Intracerebroventricular administration of obestatin inhibited water drinking in ad libitum-fed and -watered rats, and in food-and water-deprived animals. The effects on water drinking preceded and were more pronounced than any effect on food intake, and did not appear to be the result of altered locomotor/behavioral activity. In addition, obestatin inhibited ANG II-induced water drinking in animals provided free access to water and food. Current-clamp recordings from cultured, subfornical organ neurons revealed significant effects of the peptide on membrane potential, suggesting this as a potential site of action. In pituitary cell cultures, log molar concentrations of obestatin ranging from 1.0 pM to 100 nM failed to alter basal growth hormone (GH) secretion. In addition, 100 nM obestatin failed to interfere with the stimulation of GH secretion by GH-releasing hormone or ghrelin and did not alter the inhibition by somatostatin in vitro. We conclude that obestatin does not act in pituitary gland to regulate GH secretion but may act in brain to alter thirst mechanisms. Importantly, in rats the effects of obestatin on food intake may be secondary to an action of the peptide to inhibit water drinking.  相似文献   

5.
Ghrelin and obestatin are two proteins that originate from post-translational processing of the preproghrelin peptide. Various authors claim an opposed role of ghrelin and obestatin in several systems. Preproghrelin mRNA is significantly expressed in airway epithelium throughout lung development, predominantly during the earliest stages. The aim of this study was to evaluate the role of ghrelin and obestatin in fetal lung development in vitro. Immunohistochemistry studies were performed at different gestational ages in order to clarify the expression pattern of ghrelin, GHS-R1a, obestatin and GPR39 during fetal lung development. Fetal rat lung explants were harvested at 13.5 days post-conception (dpc) and cultured during 4 days with increasing doses of total ghrelin, acylated ghrelin, desacyl-ghrelin, ghrelin antagonist (D-Lys(3)-GHRP-6) or obestatin. Immunohistochemistry studies demonstrated that ghrelin, GHS-R1a, obestatin and GPR39 proteins were expressed in primitive rat lung epithelium throughout all studied gestational ages. Total and acylated ghrelin supplementation significantly increased the total number of peripheral airway buds, whereas desacyl-ghrelin induced no effect. Moreover, GHS-R1a antagonist significantly decreased lung branching. Finally, obestatin supplementation induced no significant effect in the measured parameters. The present study showed that ghrelin has a positive effect in fetal lung development through its GHS-R1a receptor, whereas obestatin has no effect on lung branching.  相似文献   

6.
BACKGROUND: Ghrelin and obestatin are encoded by the preproghrelin gene and originate from posttranslational processing of the preproghrelin peptide. The fetal rat pancreas contains acylated and desacylated ghrelin peptides, as well as growth hormone secretagogue receptor -1a mRNA. Acylated ghrelin inhibits insulin secretion. We investigated the plasma and tissue ontogeny of ghrelin and obestatin in the rat. METHODS: We measured obestatin and acylated and total ghrelin concentrations in plasma, pancreas and stomach from rat fetuses (F20) and neonates at postnatal day (PN) 1, 6, 12 and 21). RESULTS: Overall, obestatin concentrations were markedly lower than total ghrelin concentrations. In plasma, total ghrelin concentrations decreased abruptly after birth (p < 0.05), contrasting with a 3 times increase in the concentration of acylated ghrelin between F20 and PN1 (p < 0.05). In pancreas, total ghrelin and obestatin concentrations decreased progressively from PN1 to PN21 but acylated ghrelin concentrations increased 6-7 times from F20 (18 [6] pg/ml) to PN6 (122 [59] pg/ml). The percent of acylated ghrelin increased from 1.8 (0.6) at F20 to 39.7 (13.0) % of total ghrelin immunoreactivity at PN12 (p < 0.05). There were significant positive correlations between postnatal obestatin, acylated or total ghrelin and insulin concentrations in the pancreas (all p < 0.02, r(2) > 0.21) and between postnatal total ghrelin and obestatin (in pancreas, r(2) = 0.37) or acylated ghrelin (in stomach, r(2) = 0.27) (p < 0.001). CONCLUSION: Ghrelin and obestatin are present in the perinatal pancreas where they could potentially affect insulin secretion.  相似文献   

7.
Ghrelin and obestatin are a single gene products and are a multiple functional peptides that regulates energy homeostasis, and food intake. In the present work, we studied the secretion of ghrelin and its co-secreted peptide obestatin in 44 patients with ischemic heart disease with that of 27 healthy matched controls. Here we first conducted using an immunohistochemistry assay to screen whether human salivary glands have any obestatin immunoreactivity. Then, serum and saliva obestatin and acylated ghrelin levels were determined by using Radioimmunoassay. Our immunohistochemical analysis demonstrated that obestatin was localized in the striated and excretory duct of human salivary gland. We also report for the first time that obestatin, like ghrelin, is present in human salivary gland and saliva. No evidence of the role of obestatin or ghrelin saliva levels in the context of ischemic heart disease was found. Salivary ghrelin and obestatin levels are correlated in controls with the blood levels. Determination of salivary values could represent a non-invasive alternative to serum ones that can be useful in clinical practice.  相似文献   

8.
Des-acyl-ghrelin is a 28 amino acid peptide secreted by both human and rat stomach. Together with ghrelin and obestatin, it is obtained by post-translational modification of a 117 aminoacid prepropeptide mainly expressed in distinct endocrine cell type in the stomach. Although its receptor has not been unambiguously identified so far, des-acyl-ghrelin is considered one of the strongest antagonists of ghrelin in activating the growth hormone secretagogue receptor (GHS-R). Here the secondary structure of des-acyl-ghrelin in different experimental conditions has been investigated and compared with that of obestatin, a bioactive peptide having similar biological functions. CD and NMR techniques have been combined for gaining the desired conformational features. The obtained structures support a steady alpha-helix structure spanning residues from 7 to 14, very similar to that observed for obestatin at the same experimental conditions, leading to suggest that a similar secondary structure can be associated with the similar biological role.  相似文献   

9.
Obestatin is a 23-amino acid peptide derived from preproghrelin, purified from stomach extracts and detected in peripheral plasma. In contrast to ghrelin, obestatin has been reported to inhibit appetite and gastric motility. However, these effects have not been confirmed by some groups. Obestatin was originally proposed to be the ligand for GPR39, a receptor related to the ghrelin receptor subfamily, but this remains controversial. Obestatin and GPR39 are expressed in several tissues, including pancreas. We have investigated the effect of obestatin on islet cell secretion in the perfused rat pancreas. Obestatin, at 10 nM, inhibited glucose-induced insulin secretion, while at 1 nM, it potentiated the insulin response to glucose, arginine and tolbutamide. The potentiated effect of obestatin on glucose-induced insulin output was not observed in the presence of diazoxide, an agent that activates ATP-dependent K(+) channels, thus suggesting that these channels might be sensitive to this peptide. Obestatin failed to significantly modify the glucagon and somatostatin responses to arginine, indicating that its stimulation of insulin output is not mediated by an alpha- or delta-cell paracrine effect. Our results allow us to speculate about a role of obestatin in the control of beta-cell secretion. Furthermore, as an insulinotropic agent, its potential antidiabetic effect may be worthy of investigation.  相似文献   

10.
Among the factors playing a crucial role in the regulation of energy metabolism, gastro-intestinal peptides are essential signals to maintain energy homeostasis as they relay to the central nervous system the informations about the nutritional status of the body. Among these factors, preproghrelin is a unique prohormone as it encodes ghrelin, a powerful GH secretagogue and the only orexigenic signal from the gastrointestinal tract and obestatin, a proposed functional ghrelin antagonist. These preproghrelin-derived peptides may contribute to balance energy intake, metabolism and body composition by regulating the activity of the GH/IGF-1 axis and appetite. Whereas the contribution of ghrelin has been well characterized, the role of the more recently identified obestatin, in this regulatory process is still controversial. In this chapter, we describe the contribution of these different preproghrelin-derived peptides and their receptors in the regulation of GH secretion and feeding. Data obtained from pharmacological approaches, mutant models and evaluation of the hormones in animal and human models are discussed.  相似文献   

11.
The aims of this study are to examine in children: (i) obesity‐related alterations in satiety factors such as leptin, ghrelin, and obestatin; (ii) the link between satiety factors and cardiometabolic risk factors; and (iii) the impact of a physical activity‐based lifestyle intervention on the levels of these satiety factors in the obese. We studied a total of 21 adolescents (BMI percentile, 99.0 ± 0.6 for 15 obese and 56.2 ± 1.1 for 6 lean). The obese subjects underwent a 3‐month randomized controlled physical activity‐based lifestyle intervention. Leptin, soluble leptin receptor (sOB‐R), ghrelin, and obestatin levels were determined as the primary outcome measures. Other markers of cardiometabolic disease such as inflammation and insulin resistance were also determined. Body composition was measured by dual‐energy X‐ray absorptiometry. The concentrations of ghrelin, obestatin, and sOB‐R were significantly lower in the obese children compared to the lean controls, whereas that of leptin was higher (all P < 0.05). Although intervention led to a net increase in obestatin (P < 0.01) and no change in ghrelin levels, the balance between ghrelin and obestatin (ratio of ghrelin to obestatin, G/O) decreased (P < 0.02). Intervention reduced leptin and increased sOB‐R (P < 0.01 for both). Significant associations between satiety factors and other cardiometabolic risk factors were also observed. Taken together, alterations in the levels of satiety factors are evident early in the clinical course of obesity, but physical activity‐based lifestyle intervention either prevented their continued increase or normalized their levels. These beneficial effects appear to aid in the maintenance of body weight and reduction in cardiovascular risk.  相似文献   

12.
Over the past decade, our knowledge of how homeostatic systems regulate food intake and body weight has increased with the discovery of circulating peptides such as leptin, acyl ghrelin, des-acyl ghrelin and obestatin. These hormones regulate the appetite and food intake by sending signals to the brain regarding the body''s nutritional status. The purpose of this study was to investigate the response of appetite-regulating hormones to exercise. Nine overweight women undertook two 2 h trials in a randomized crossover design. In the exercise trial, subjects ran for 60 min at 50% of maximal oxygen uptake followed by a 60 min rest period. In the control trial, subjects rested for 2 h. Obestatin, acyl ghrelin, des-acyl ghrelin and leptin concentrations were measured at baseline and at 20, 40, 60, 90 and 120 min after baseline. A two-way ANOVA revealed a significant (P < 0.05) interaction effect for leptin and acyl ghrelin. However, changes in obestatin and des-acyl ghrelin concentration were statistically insignificant (P > 0.05). The data indicated that although acute treadmill exercise resulted in a significant change in acyl ghrelin and leptin levels, it had no effect on plasma obestatin and des-acyl ghrelin levels.  相似文献   

13.
Obestatin, derived from the same gene as the hunger hormone ghrelin, may reduce food intake in animals. The role of obestatin in human physiology is unclear. We evaluated cross‐sectional associations between participant characteristics and fasting levels of obestatin as well two other hormones associated with energy balance, ghrelin and leptin. Data are from the baseline visit of the Optimal Macronutrient Intake Trial to Prevent Heart Disease (OMNI‐Heart) Trial that enrolled adults with elevated blood pressure (systolic 120–159 mm Hg or a diastolic of 80–99 mm Hg) but who were otherwise healthy. Partial Spearman's correlations and linear regression models estimated the association between age, gender, BMI, physical activity, and smoking with fasting hormones. Obestatin was directly associated with ghrelin (r = 0.45, P < 0.05). On average, overweight (BMI 25–30) and obese (BMI > 30) individuals had obestatin concentrations that were 12.6 (s.d. 8.8) and 25.4 (s.d. 8.4) pg/ml lower compared to normal weight (BMI < 25) individuals, respectively (P for trend = 0.002). Overweight (BMI 25–30) and obese (BMI > 30) individuals had ghrelin concentrations that were 161.7 (s.d. 69.6) and 284.7 (s.d. 66.5) pg/ml lower compared to normal weight (BMI < 25) individuals, respectively (P for trend <0.0001). A 5 unit increase in BMI was associated with 41.3% (s.d. 4.3%) (P < 0.0001) higher leptin. Obestatin and ghrelin are directly correlated and share the same patterns of association with participant characteristics. Modifiable risk factors for chronic diseases, such as BMI, are associated with fasting levels of leptin, obestatin, and ghrelin.  相似文献   

14.
To examine the effect of obestatin, a recently identified peptide derived from preproghrelin, on pituitary hormone secretion, obestatin was administered in anesthetized male rats. Intravenous administration of obestatin did not show any effect on plasma GH, PRL, ACTH and TSH levels. Since obestatin has been reported to have opposite effects of ghrelin in regulating food intake, gastric emptying and intestinal contractility, GH suppressive effect, which is opposite effect of ghrelin, was tested. Intravenous administration of GHRH or GHRP-2, a ghrelin receptor ligand, resulted in a marked plasma GH elevation. However obestatin did not show any effect on GHRH- or GHRP-2-induced GH rise. Furthermore intracerebroventricular administration of obestatin also did not influence plasma GH, PRL, ACTH and TSH levels. These findings suggest that obestatin has no effect on pituitary hormone secretions despite the presence of GPR39, a receptor for obestatin, in the pituitary.  相似文献   

15.
Ghrelin and obestatin are two peptide hormones with opposing roles in the control of appetite: orexigenic and anorexigenic, respectively. Loss of appetite is a common, serious complication of many forms of malignancy. The goals of this study were to investigate: (i) whether there are differences in ghrelin and obestatin peptide expression in thyroid tissues from a series of papillary carcinoma cases and normal controls, and (ii) whether there are correlations between tissue ghrelin and obestatin levels in series of papillary carcinoma cases and normal controls. Immunohistochemical analysis showed that in sections of benign human thyroid tissue, anti-ghrelin antibody reacted with intense staining in colloid-filled follicles. In benign thyroid tissues, colloids displayed plentiful dispersion in comparison with papillary microcarcinomas, whereas colloids in malignant thyroid tissues were uncommon. We found markedly lower tissue ghrelin levels in thyroid tissue of patients with papillary carcinomas, compared with normal thyroid tissues (= 0.001). Immunohistochemical analysis also showed that obestatin in papillary carcinoma stained positively to various degrees. Obestatin tissue levels in papillary carcinomas tended to be slightly higher than those in normal thyroid tissue, but this was not statistically significant (= 0.29). We also report that thyroid tissue of patients with Hashimoto’s thyroiditis produced ghrelin and obestatin at similar levels as in normal thyroid tissue, even though colloid in Hashimoto’s disease is scarce. We conclude that depressed expression of ghrelin, but not obestatin, is specific to papillary carcinoma, and this difference might constitute a diagnostic tool to differentiate papillary carcinoma from normal thyroid tissue. We currently do not know how these peptides are regulated and what factors are involved in papillary carcinoma, which inhibit the expression of ghrelin but not obestatin. This issue warrants further studies.  相似文献   

16.

Background

Ghrelin and obestatin are two gut-derived peptides originating from the same ghrelin/obestatin prepropeptide gene (GHRL). While ghrelin stimulates growth hormone (GH) secretion and food intake and inhibits γ-aminobutyric-acid synaptic transmission onto GHRH (Growth Hormone Releasing Hormone) neurons, obestatin blocks these effects. In Humans, GHRL gene polymorphisms have been associated with pathologies linked to an unbalanced energy homeostasis. We hypothesized that one polymorphism located in the obestatin sequence (Q to L substitution in position 90 of the ghrelin/obestatin prepropeptide, rs4684677) may impact on the function of obestatin. In the present study, we tested the activity of native and Q90L obestatin to modulate ghrelin-induced food intake, GH secretion, cFos activity in GHRH and Neuropeptide Y (NPY) neurons and γ-aminobutyric-acid activity onto GHRH neurons.

Methodology/Principal findings

Food intake, GH secretion and electrophysiological recordings were assessed in C57BL/6 mice. cFos activity was measured in NPY-Renilla-GFP and GHRH-eGFP mice. Mice received saline, ghrelin or ghrelin combined to native or Q90L obestatin (30 nmol each) in the early light phase. Ghrelin stimulation of food intake and GH secretion varied considerably among individual mice with 59–77% eliciting a robust response. In these high-responders, ghrelin-induced food intake and GH secretion were reduced equally by native and Q90L obestatin. In contrast to in vivo observations, Q90L was slightly more efficient than native obestatin in inhibiting ghrelin-induced cFos activation within the hypothalamic arcuate nucleus and the nucleus tractus solitarius of the brainstem. After ghrelin injection, 26% of NPY neurons in the arcuate nucleus expressed cFos protein and this number was significantly reduced by co-administration of Q90L obestatin. Q90L was also more potent that native obestatin in reducing ghrelin-induced inhibition of γ-aminobutyric-acid synaptic transmission onto GHRH neurons.

Conclusions/Significance

These data support the hypothesis that Q90L obestatin partially blocks ghrelin-induced food intake and GH secretion by acting through NPY and GHRH neurons.  相似文献   

17.
The human ghrelin gene, which encodes the ghrelin and obestatin peptides, contains 5 exons (Ex), with Ex1-Ex4 encoding a 117 amino-acid (aa) preproprotein that is known to be processed to yield a 28-aa (ghrelin) and/or a 23-aa (obestatin) mature peptides, which possess biological activities in multiple tissues. However, the ghrelin gene also encodes additional peptides through alternative splicing or post-translational modifications. Indeed, we previously identified a spliced mRNA ghrelin variant in mouse (In2-ghrelin-variant), which is regulated in a tissue-dependent manner by metabolic status and may thus be of biological relevance. Here, we have characterized a new human ghrelin variant that contains Ex0-1, intron (In) 1, and Ex2 and lacks Ex3-4. This human In1-ghrelin variant would encode a new prepropeptide that conserves the first 12aa of native-ghrelin (including the Ser3-potential octanoylation site) but has a different C-terminal tail. Expression of In1-variant was detected in 22 human tissues and its levels were positively correlated with those of ghrelin-O-acyltransferase (GOAT; p = 0.0001) but not with native-ghrelin expression, suggesting that In1-ghrelin could be a primary substrate for GOAT in human tissues. Interestingly, levels of In1-ghrelin variant expression in breast cancer samples were 8-times higher than those of normal mammary tissue, and showed a strong correlation in breast tumors with GOAT (p = 0.0001), ghrelin receptor-type 1b (GHSR1b; p = 0.049) and cyclin-D3 (a cell-cycle inducer/proliferation marker; p = 0.009), but not with native-ghrelin or GHSR1a expression. Interestingly, In1-ghrelin variant overexpression increased basal proliferation of MDA-MB-231 breast cancer cells. Taken together, our results provide evidence that In1-ghrelin is a novel element of the ghrelin family with a potential pathophysiological role in breast cancer.  相似文献   

18.
Peptides ghrelin, obestatin and neuropeptide Y (NPY) play an important role in regulation of energy homeostasis, the imbalance of which is associated with eating disorders anorexia (AN) and bulimia nervosa (BN). The changes in ghrelin, obestatin and NPY plasma levels were investigated in AN and BN patients after administration of a high-carbohydrate breakfast (1604 kJ). Eight AN women (aged 25.4+/-1.9, BMI: 15.8+/-0.5), thirteen BN women (aged 22.0+/-1.05, BMI: 20.1+/-0.41) and eleven healthy women (aged 25.1+/-1.16, BMI: 20.9+/-0.40) were recruited for the study. We demonstrated increased fasting ghrelin in AN, but not in BN patients, while fasting obestatin and NPY were increased in both AN and BN patients compared to the controls. Administration of high-carbohydrate breakfast induced a similar relative decrease in ghrelin and obestatin plasma levels in all groups, while NPY remained increased in postprandial period in both patient groups. Ghrelin/obestatin ratio was lower in AN and BN compared to the controls. In conclusions, increased plasma levels of fasting NPY and its unchanged levels after breakfast indicate that NPY is an important marker of eating disorders AN and BN. Different fasting ghrelin and obestatin levels in AN and BN could demonstrate their diverse functions in appetite and eating suppression.  相似文献   

19.
20.
Pan W  Tu H  Kastin AJ 《Peptides》2006,27(4):911-916
Endogenous compounds, including ingestive peptides, can interact with the blood-brain barrier (BBB) in different ways. Here we used in vivo and in vitro techniques to examine the BBB permeation of the newly described satiety peptide obestatin. The fate of obestatin in blood and at the BBB was contrasted with that of adiponectin. By the sensitive multiple time-regression method, obestatin appeared to have an extremely fast influx rate to the brain whereas adiponectin did not cross the BBB. HPLC analysis, however, showed the obestatin result to be spurious, reflecting rapid degradation. Absence of BBB permeation by obestatin and adiponectin was in contrast to the saturable transport of human ghrelin reported previously. As a positive control, ghrelin showed saturable binding and endocytosis in RBE4 cerebral microvessel endothelial cells. By comparison, obestatin lacked specific binding and endocytosis, and the small amount internalized showed rapid intracellular degradation before the radioactivity was released by exocytosis. The differential interactions of obestatin, adiponectin, and ghrelin with the BBB illustrate their distinctive physiological interactions with the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号