首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Models have been formulated for monospecific stands in which canopy photosynthesis is determined by the vertical distribution of leaf area, nitrogen and light. In such stands, resident plants can maximize canopy photosynthesis by distributing their nitrogen parallel to the light gradient, with high contents per unit leaf area at the top of the vegetation and low contents at the bottom. Using principles from game theory, we expanded these models by introducing a second species into the vegetation, with the same vertical distribution of biomass and nitrogen as the resident plants but with the ability to adjust its specific leaf area (SLA, leaf area:leaf mass). The rule of the game is that invaders replace the resident plants if they have a higher plant carbon gain than those of the resident plants. We showed that such invaders induce major changes in the vegetation. By increasing their SLA, invading plants could increase their light interception as well as their photosynthetic nitrogen-use efficiency (PNUE, the rate of photosynthesis per unit organic nitrogen). By comparison with stands in which canopy photosynthesis is maximized, those invaded by species of high SLA have the following characteristics: (1) the leaf area index is higher; (2) the vertical distribution of nitrogen is skewed less; (3) as a result of the supra-optimal leaf area index and the more uniform distribution of nitrogen, total canopy photosynthesis is lower. Thus, in dense canopies we face a classical tragedy of the commons: plants that have a strategy to maximize canopy carbon gain cannot compete with those that maximize their own carbon gain. However, because of this strategy, individual as well as total canopy carbon gain are eventually lower. We showed that it is an evolutionarily stable strategy to increase SLA up to the point where the PNUE of each leaf is maximized.  相似文献   

2.
The canopy structure of a stand of vegetation is determined by the growth patterns of the individual plants within the stand and the competitive interactions among them. We analyzed the carbon gain of individuals in two dense monospecific stands of Xanthium canadense and evaluated the consequences for intra-specific competition and whole-stand canopy structure. The stands differed in productivity, and this was associated with differences in nitrogen availability. Canopy structure, aboveground mass, and nitrogen contents per unit leaf area (Narea) were determined for individuals, and leaf photosynthesis was measured as a function of Narea. These data were used to calculate the daily carbon gain of individuals. Within stands, photosynthesis per unit aboveground mass (Pmass) of individual plants increased with plant height, despite the lower leaf area ratios of taller plants. The differences in Pmass between the tallest most dominant and shortest most subordinate plants were greater in the high-nitrogen than in the low-nitrogen stand. This indicated that competition was asymmetric and that this asymmetry increased with nitrogen availability. In the high-nitrogen stand, taller plants had a higher Pmass than shorter ones, because they captured more light per unit mass and because they had higher photosynthesis per unit of absorbed light. Conversely, in the low-nitrogen stand, the differences in Pmass between plants of different heights resulted only from differences in their light capture per unit mass. Sensitivity analyses revealed that an increase in Narea, keeping leaf area of plants constant, increased whole-plant carbon gain for the taller more dominant plants but reduced carbon gain in the shorter more subordinate ones, which implies that the Narea values of shorter plants were greater than the optimal values for maximum photosynthesis. On the other hand, the carbon gain of all individual plants, keeping their total canopy N constant, was positively related to an increase in their individual leaf area. At the same time, however, increasing the leaf area for all plants simultaneously reduced the carbon gain of the whole stand. This result shows that the optimal leaf area index (LAI), which maximizes photosynthesis of a stand, is not evolutionarily stable because at this LAI, any individual can increase its carbon gain by increasing its leaf area.  相似文献   

3.

Background and Aims

While within-species competition for light is generally found to be asymmetric – larger plants absorbing more than proportional amounts of light – between-species competition tends to be more symmetric. Here, the light capture was analysed in a 5-year-old competition experiment that started with ten genotypes of the clonal plant Potentilla reptans. The following hypotheses were tested: (a) if different genotypes would do better in different layers of the canopy, thereby promoting coexistence, and (b) if leaves and genotypes with higher total mass captured more than proportional amounts of light, possibly explaining the observed dominance of the abundant genotypes.

Methods

In eight plots, 100 leaves were harvested at various depths in the canopy and their genotype determined to test for differences in leaf biomass allocation, leaf characteristics and the resulting light capture, calculated through a canopy model using the actual vertical light and leaf area profiles. Light capture was related to biomass to determine whether light competition between genotypes was asymmetric.

Key Results

All genotypes could reach the top of the canopy. The genotypes differed in morphology, but did not differ significantly in light capture per unit mass (Φmass) for leaves with the laminae placed at the same light levels. Light capture did increase disproportionately with leaf mass for all genotypes. However, the more abundant genotypes did not capture disproportionately more light relative to their mass than less-abundant genotypes.

Conclusions

Vertical niche differentiation in light acquisition does not appear to be a factor that could promote coexistence between these genotypes. Contrary to what is generally assumed, light competition among genetic individuals of the same species was size-symmetric, even if taller individual leaves did capture disproportionately more light. The observed shifts in genotype frequency cannot therefore be explained by asymmetric competition for light.Key words: Potentilla reptans, light, competition, symmetric, clonal, genotype, investment, petiole, canopy, allocation  相似文献   

4.
There is limited evidence regarding the adaptive value of plant functional traits in contrasting light environments. It has been suggested that changes in these traits in response to light availability can increase herbivore susceptibility. We tested the adaptive value of plant functional traits linked with carbon gain in contrasting light environments and also evaluated whether herbivores can modify selection on these traits in each light environment. In a temperate rainforest, we examined phenotypic selection on functional traits in seedlings of the pioneer tree Aristotelia chilensis growing in sun (canopy gap) and shade (forest understory) and subjected to either natural herbivory or herbivore exclusion. We found differential selection on functional traits depending on light environment. In sun, there was positive directional selection on photosynthetic rate and relative growth rate (RGR), indicating that selection favors competitive ability in a high-resource environment. Seedlings with high specific leaf area (SLA) and intermediate RGR were selected in shade, suggesting that light capture and conservative resource use are favored in the understory. Herbivores reduced the strength of positive directional selection acting on SLA in shade. We provide the first demonstration that natural herbivory rates can change the strength of selection on plant ecophysiological traits, that is, attributes whose main function is resource uptake. Research addressing the evolution of shade tolerance should incorporate the selective role of herbivores.  相似文献   

5.
Abstract Leaf area index (LAI) is a key parameter controlling plant productivity and biogeochemical fluxes between vegetation and the atmosphere. Tropical forests are thought to have comparably high LAIs; however, precise data are scarce and environmental controls of leaf area in tropical forests are not understood. We studied LAI and stand leaf biomass by optical and leaf mass-related approaches in five tropical montane forests along an elevational transect (1,050–3,060 m a.s.l.) in South Ecuador, and conducted a meta-analysis of LAI and leaf biomass data from tropical montane forests around the globe. Study aims were (1) to assess the applicability of indirect and direct approaches of LAI determination in tropical montane forests, (2) to analyze elevation effects on leaf area, leaf mass, SLA, and leaf lifespan, and (3) to assess the possible consequences of leaf area change with elevation for montane forest productivity. Indirect optical methods of LAI determination appeared to be less reliable in the complex canopies than direct leaf mass-related approaches based on litter trapping and a thorough analysis of leaf lifespan. LAI decreased by 40–60% between 1,000 and 3,000 m in the Ecuador transect and also in the pan-tropical data set. This decrease indicates that canopy carbon gain, that is, carbon source strength, decreases with elevation in tropical montane forests. Average SLA decreased from 88 to 61 cm2 g−1 whereas leaf lifespan increased from 16 to 25 mo between 1,050 and 3,060 m in the Ecuador transect. In contrast, stand leaf biomass was much less influenced by elevation. We conclude that elevation has a large influence not only on the leaf traits of trees but also on the LAI of tropical montane forests with soil N (nitrogen) supply presumably being the main controlling factor.  相似文献   

6.
Nutrient availability limits productivity of arctic ecosystems, and this constraint means that the amount of nitrogen (N) in plant canopies is an exceptionally strong predictor of vegetation productivity. However, climate change is predicted to increase nutrient availability leading to increases in carbon sequestration and shifts in community structure to more productive species. Despite tight coupling of productivity with canopy nutrients at the vegetation scale, it remains unknown how species/shoot level foliar nutrients couple to growth, or how climate change may influence foliar nutrients–productivity relationships to drive changes in ecosystem carbon gain and community structure. We investigated the influence of climate change on arctic plant growth relationships to shoot level foliar N and phosphorus (P) in three dominant subarctic dwarf shrubs using an 18-year warming and nutrient addition experiment. We found a tight coupling between total leaf N and P per shoot, leaf area and shoot extension. Furthermore, a steeper shoot length-leaf N relationship in deciduous species (Vaccinium myrtillus and Vaccinium uliginosum) under warming manipulations suggests a greater capacity for nitrogen to stimulate growth under warmer conditions in these species. This mechanism may help drive the considerable increases in deciduous shrub cover observed already in some arctic regions. Overall, our work provides the first evidence at the shoot level of tight coupling between foliar N and P, leaf area and growth i.e. consistent across species, and provides mechanistic insight into how interspecific differences in alleviation of nutrient limitation will alter community structure and primary productivity in a warmer Arctic.  相似文献   

7.
The amount of photosynthetically-active photon flux density incident upon a leaf and the nitrogen content of that leaf strongly affect the photosynthetic carbon gain of that leaf. Therefore, the canopy structure of a stand, affecting the light climate in the canopy, and the leaf nitrogen distribution pattern in the canopy, affect the carbon gain of the whole canopy. This review discusses the results of studies directed to this problem and obtained so far in open and in dense canopies of stands of herbaceous, monocotyledonous or dicotyledonous, plants in their growing or flowering stages. It is found that the leaf nitrogen distribution pattern in the canopy is vertically non-uniform, and in dense stands more strongly so than in open stands. The leaf nitrogen distribution pattern in most canopies closely approaches an optimal pattern in that it maximizes whole canopy potential carbon gain as calculated for the actual total leaf nitrogen content and leaf area index of the stand. The resulting increase in potential carbon gain as compared to a uniform leaf nitrogen distribution pattern is considerable and it is larger in dense stands than in open stands. For at least some dense stands simulation studies show that with the available total leaf nitrogen content, whole canopy carbon gains could still be considerable higher had a lower leaf area index been developed.  相似文献   

8.
Development of the Monsi-Saeki theory on canopy structure and function   总被引:11,自引:0,他引:11  
Hirose T 《Annals of botany》2005,95(3):483-494
BACKGROUND AND AIMS: Monsi and Saeki (1953) published the first mathematical model of canopy photosynthesis that was based on the light attenuation within a canopy and a light response of leaf photosynthesis. This paper reviews the evolution and development of their theory. SCOPE: Monsi and Saeki showed that under full light conditions, canopy photosynthesis is maximized at a high leaf area index (LAI, total leaf area per unit ground area) with vertically inclined leaves, while under low light conditions, it is at a low LAI with horizontal leaves. They suggested that actual plants develop a stand structure to maximize canopy photosynthesis. Combination of the Monsi-Saeki model with the cost-benefit hypothesis in resource use led to a new canopy photosynthesis model, where leaf nitrogen distribution and associated photosynthetic capacity were taken into account. The gradient of leaf nitrogen in a canopy was shown to be a direct response to the gradient of light. This response enables plants to use light and nitrogen efficiently, two resources whose supply is limited in the natural environment. CONCLUSION: The canopy photosynthesis model stimulated studies to scale-up from chloroplast biochemistry to canopy carbon gain and to analyse the resource-use strategy of species and individuals growing at different light and nitrogen availabilities. Canopy photosynthesis models are useful to analyse the size structure of populations in plant communities and to predict the structure and function of future terrestrial ecosystems.  相似文献   

9.
Tropical forest structural variation across heterogeneous landscapes may control above‐ground carbon dynamics. We tested the hypothesis that canopy structure (leaf area and light availability) – remotely estimated from LiDAR – control variation in above‐ground coarse wood production (biomass growth). Using a statistical model, these factors predicted biomass growth across tree size classes in forest near Manaus, Brazil. The same statistical model, with no parameterisation change but driven by different observed canopy structure, predicted the higher productivity of a site 500 km east. Gap fraction and a metric of vegetation vertical extent and evenness also predicted biomass gains and losses for one‐hectare plots. Despite significant site differences in canopy structure and carbon dynamics, the relation between biomass growth and light fell on a unifying curve. This supported our hypothesis, suggesting that knowledge of canopy structure can explain variation in biomass growth over tropical landscapes and improve understanding of ecosystem function.  相似文献   

10.
南京地区落叶栎林主要木本植物的展叶动态研究   总被引:4,自引:0,他引:4       下载免费PDF全文
 植物的展叶过程是由自身遗传因子决定的,同时又受到多种生态因子的调节,反映了植物的生活史对策和群落物种多样性的维持机制。在2001和2002年的3~6月间,不定期记录了南京地区三个落叶栎(Quercus spp.)林中主要木本植物的展叶情况,包括被标记标准枝的叶数、叶的长度、宽度、叶面积、叶干重等参数。结果表明在所调查的落叶栎林中,林冠层物种的成熟叶面积和单位叶面积干重都显著大于林下层物种;最早展叶的物种为林下层物种,但林冠层展叶顺序与林下层无显著差异。叶面积越大、单位叶面积干重越小的物种展叶越晚;林冠层物种展叶较林下层快,物种成熟叶面积越大,展叶速率越大。最后对展叶顺序和展叶速度的生态学意义作了讨论。  相似文献   

11.
Nitrogen distribution within a leaf canopy is an important determinant of canopy carbon gain. Previous theoretical studies have predicted that canopy photosynthesis is maximized when the amount of photosynthetic nitrogen is proportionally allocated to the absorbed light. However, most of such studies used a simple Beer's law for light extinction to calculate optimal distribution, and it is not known whether this holds true when direct and diffuse light are considered together. Here, using an analytical solution and model simulations, optimal nitrogen distribution is shown to be very different between models using Beer's law and direct–diffuse light. The presented results demonstrate that optimal nitrogen distribution under direct–diffuse light is steeper than that under diffuse light only. The whole‐canopy carbon gain is considerably increased by optimizing nitrogen distribution compared with that in actual canopies in which nitrogen distribution is not optimized. This suggests that optimization of nitrogen distribution can be an effective target trait for improving plant productivity.  相似文献   

12.
Plant community diversity and ecosystem function are conditioned by competition among co-occurring species for multiple resources. Previous studies suggest that removal of standing biomass by grazing decreases competition for light, but coincident grazing effects on competition for soil nutrients remain largely unknown in Tibetan rangelands where grazing tends to deplete soil phosphorus availability. We measured five functional traits indicative of plant productivity and stoichiometry leaf carbon concentration (LCC), leaf nitrogen concentration (LNC), leaf phosphorus concentration (LPC), specific leaf area (SLA), leaf dry matter content (LDMC) for component species of plant communities in grazed and ungrazed plots in five Tibetan alpine meadows. We examined the diversity of traits singly Rao index of functional diversity (FDrao) and in aggregate functional richness (FRic), functional divergence (FDiv), and functional evenness (FEve) in response to grazing. We tested whether foliar trait diversity increases with nutrient competition but decreases with light competition when competitive exclusion is reduced by grazing. The FDrao of LPC significantly increased under grazing, but FDrao for LCC, LNC and SLA tended to decrease. The FDrao of LDMC increased at the drier site but decreased at the wettest site. There was a strong negative association between increase in FDrao of LPC and decrease in soil nutrients, especially soil phosphorus availability. The FRic for all five traits together increased with species diversity following grazing, but neither FDiv nor FEve differed significantly between grazed and ungrazed plots at most sites. Grazing in Tibetan alpine meadows tends to increase competition for soil phosphorus while decreasing competition for light, resulting in an increase in the functional richness in grazed plant communities without any significant changes in the overall functional diversity of foliar traits. Our study highlights the potential importance of grazing mediated competition for multiple resources in alpine meadow ecosystems.  相似文献   

13.
Breeding strategies for drought tolerance in potato were evaluated by means of a crop growth model, in which seasonal courses of crop dry matter accumulation and soil moisture availability were simulated in dependence of plant characteristics and weather and soil data.Several plant characteristics substantially influenced the simulated instantaneous water consumption of the genotype. However, effects of genotypic differences on final tuber yield were much smaller because of the close relationship between transpiration and growth. Hence, a lower water consumption not only saved water for later use, but was also at the expense of the actual growth rate. Selection for low-transpiration types, at unchanged water use efficiency, would result in lower yields under optimum conditions.Short periods of drought, in general, reduced tuber yield of late genotypes less than that of early genotypes. Late genotypes had a surplus of leaf area for full light interception giving a lower impact of leaf area reduction. Late drought affected early genotypes less because of escape.The simulation results emphasized the complexity of selection for drought tranrance caused by the many plant processes involved, the contrast between instantaneous and cumulative reactions and the strong genotype × environment interaction for drought tolerance.  相似文献   

14.
Summary A multispecies canopy photosynthesis simulation model was used to examine the importance of canopy structure in influencing light interception and carbon gain in mixed and pure stands of wheat (Triticum aestivum L.) and wild oat (Avena fatua L.), a common weedy competitor of wheat. In the mixtures, the fraction of the simulated canopy photosynthesis contributed by wheat was found to decline during the growing season and this decline was closely related to reductions in the amount of leaf area in upper canopy layers. For both species in mixture and in monoculture, simulated photosynthesis was greatest in the middle or upper-middle canopy layers and sensitivity analyses revealed that canopy photosynthesis was most sensitive to changes in leaf area and leaf inclination in these layers. Changes in LAI and leaf inclination affected canopy carbon gain differently for mixtures and monocultures, but the responses were not the same for the two species. Results from simulations where the structural characteristics of the two species were substituted indicated that species differences in leaf inclination, sheath area and the fraction of leaf area alive were of minor consequence compared with the differences in total leaf area in influencing relative canopy carbon gain in mixtures. Competition for light in these species mixtures appears to be influenced most by differences in the positioning of leaf area in upper canopy layers which determines, to a great extent, the amount of light intercepted.  相似文献   

15.
The objective was to investigate how nitrogen allocation patterns in plants are affected by their vertical position in the vegetation (i.e. being either dominant or subordinate). A garden experiment was carried out with Amaranthus dubius L., grown from seed, in dense stands in which a size hierarchy of nearly equally aged individuals had developed. A small number of dominant plants had most of their leaf area in the highest layers of the canopy while a larger number of subordinate plants grew in the shade of their dominant neighbours. Canopy structure, vertical patterns of leaf nitrogen distribution and leaf photosynthetic characteristics were determined in both dominant and subordinate plants. The light distribution in the stands was also measured. Average N contents per unit leaf area (total canopy nitrogen divided by the total leaf area) were higher in the dominant than in the subordinate plants and this was explained by the higher average MPA (leaf dry mass per unit area) of the dominant plants. However, when expressed on a weight basis, average N contents (LNCav; total canopy N divided by the total dry weight of leaves) were higher in the subordinate plants. It is possible that these higher LNCav values reflect an imbalance between carbon and nitrogen assimilation with N uptake exceeding its metabolic requirement. Leaf N content per unit area decreased more strongly with decreasing relative photon flux density in the dominant than in the subordinate plants showing that this distribution pattern can be different for plants which occupy different positions in the light gradient in the canopy. The amount of N which is reallocated from the oldest to the younger, more illuminated leaves higher up in the vegetation may depend on the sink strength of the younger leaves for nitrogen. In the subordinate plants, constrained photosynthetic activity caused by shading might have reduced the sink intensity of these leaves.  相似文献   

16.
We investigated leaf physiological traits of dominant canopy trees in four lowland Panamanian forests with contrasting mean annual precipitation (1,800, 2,300, 3,100 and 3,500 mm). There was near complete turn-over of dominant canopy tree species among sites, resulting in greater dominance of evergreen species with long-lived leaves as precipitation increased. Mean structural and physiological traits changed along this gradient as predicted by cost–benefit theories of leaf life span. Nitrogen content per unit mass (Nmass) and light- and CO2-saturated photosynthetic rates per unit mass (Pmass) of upper canopy leaves decreased with annual precipitation, and these changes were partially explained by increasing leaf thickness and decreasing specific leaf area (SLA). Comparison of 1,800 mm and 3,100 mm sites, where canopy access was available through the use of construction cranes, revealed an association among extended leaf longevity, greater structural defense, higher midday leaf water potential, and lower Pmass, Nmass, and SLA at wetter sites. Shorter leaf life spans and more enriched foliar 15N values in drier sites suggest greater resorption and re-metabolism of leaf N in drier forest. Greater dominance of short-lived leaves with relatively high Pmass in drier sites reflects a strategy to maximize photosynthesis when water is available and to minimize water loss and respiration costs during rainless periods. Overall, our study links coordinated change in leaf functional traits that affect productivity and nutrient cycling to seasonality in lowland tropical forests.  相似文献   

17.
Patterns of above-ground biomass allocation and light captureby plants growing in dense stands or in isolation were studiedin relation to their height. A canopy model was developed tocalculate light absorption by individual plants. This modelwas combined with data on canopy structure and patterns of biomassallocation for solitary plants and for plants of different heightsin dense mono-specific stands of the dicotyledonous annualXanthiumcanadenseMill. There were four stands, and stand height increasedwith age and nutrient availability. The allometric relationshipbetween height and mass differed considerably between plantsin stands and those growing in isolation and also between plantsof different heights within stands. The proportion of shootmass in leaf laminae (LMR) decreased with increasing plant height,but solitary plants had a higher LMR than competing plants ofthe same height. Thus, in contrast to previous assumptions,LMR of competing plants is not strictly determined by biomechanicalconstraints but results from a plastic shift in biomass allocationin response to competition. Average leaf area per unit leafmass (SLA) decreased with increasing photosynthetic photon fluxdensity (PPFD) independent of nutrient availability. Consequently,taller, more dominant plants in stands had a lower leaf arearatio (LAR: LAR=LMRxSLA) than shorter, more subordinate plants.Dominant plants absorbed more light both per unit leaf area(  相似文献   

18.
Mediterranean climates are prone to a great variation in yearly precipitation. The effects on ecosystem will depend on the severity and timing of droughts. In this study we questioned how an extreme dry winter affects the carbon flux in the understorey of a cork oak woodland? What is the seasonal contribution of understorey vegetation to ecosystem productivity?We used closed-system portable chambers to measure CO2 exchange of the dominant shrub species (Cistus salviifolius, Cistus crispus and Ulex airensis), of the herbaceous layer and on bare soil in a cork oak woodland in central Portugal during the dry winter year of 2012. Shoot growth, leaf shedding, flower and fruit setting, above and belowground plant biomass were measured as well as seasonal leaf water potential. Eddy-covariance and micrometeorological data together with CO2 exchange measurements were used to access the understorey species contribution to ecosystem gross primary productivity (GPP).The herbaceous layer productivity was severely affected by the dry winter, with half of the yearly maximum aboveground biomass in comparison with the 6 years site average. The semi-deciduous and evergreen shrubs showed desynchronized phenophases and lagged carbon uptake maxima. Whereas shallow-root shrubs exhibited opportunistic characteristics in exploiting the understorey light and water resources, deep rooted shrubs showed better water status but considerably lower assimilation rates. The contribution of understorey vegetation to ecosystem GPP was lower during summer with 14% and maximum during late spring, concomitantly with the lowest tree productivity due to tree canopy renewal. The herbaceous vegetation contribution to ecosystem GPP never exceeded 6% during this dry year stressing its sensitivity to winter and spring precipitation.Although shrubs are more resilient to precipitation variability when compared with the herbaceous vegetation, the contribution of the understorey vegetation to ecosystem GPP can be quite variable and will ultimately depend of tree density and canopy cover.  相似文献   

19.
Genetic differences in individual-tree biomass partitioning, growth efficiency, and stem relative growth rate (RGR) could confer intraspecific productivity differences and might strongly influence forest ecosystem carbon storage. We examined the relationship between genotype productivity (stem volume), whole-tree biomass partitioning, growth efficiency (stem wood production per unit leaf area), and stem RGR among nine different loblolly pine (Pinus taeda L.) genotypes from three different genetic groups of contrasting inherent genetic homogeneity: three open-pollinated (half-sib) families, three mass-control pollinated (full-sib) families, and three clonal varieties. We hypothesized that genotype productivity would be positively associated with increased partitioning to stem wood relative to other plant parts, higher stem RGR, and enhanced growth efficiency. After 3 years under plantation conditions, genotypes showed significant differences in stem volume, percent stem wood, percent branch wood, and partitioning to fine roots, yet no differences in stem RGR or growth efficiency. Furthermore, genotypic differences in stem volume were independent of genotypic differences in biomass partitioning, and overall, we found no evidence to support the hypothesized relationships. Even so, the observed variation in biomass partitioning has implications for forest C sequestration as genotypes which partition more biomass to long-lived biomass pools such as stems, may sequester more C. Moreover, the lack of a genetic relationship between stem volume and belowground partitioning suggests that highly productive genotypes may be planted without compromising belowground C storage.  相似文献   

20.
Rapid evolution may be common in human-dominated landscapes where environmental changes are severe. We used phenotypic selection analyses and a marker-based method to estimate genetic variances and covariances to predict the potential response to selection in populations of a long-lived cycad recently exposed to drastic environmental changes. Patterns of selection in adult fecundity showed that different traits were under directional selection in subpopulations from native-undisturbed habitats and the novel degraded-forest habitat. Plants from a native-habitat subpopulation tend to maximize fitness through larger leaf area or smaller specific leaf area (SLA). In contrast, larger leaf production increased fitness in a degraded-habitat subpopulation, and canopy openness appears to be a major agent of selection for this trait. Leaf production and SLA showed significant additive genetic variance and no genetic trade-offs with examined traits, suggesting that these traits can respond to selection. Directional selection coefficients and heritability values were large, therefore significant phenotypic changes between subpopulations in few generations are possible. These results suggest that recent environmental change can result in strong directional selection in subpopulations of this cycad, and that these subpopulations have the potential to diverge at the genetic level in leaf traits after anthropogenic habitat degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号