首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The enzymes dihydroneopterin aldolase (DHNA) and 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyse two consecutive steps in the biosynthesis of folic acid. Neither of these enzymes has a counterpart in mammals, and they have therefore been suggested as ideal targets for antimicrobial drugs. Some of the enzymes within the folate pathway can occur as bi- or trifunctional complexes in bacteria and parasites, but the way in which bifunctional DHNA-HPPK enzymes are assembled is unclear. Here, we report the determination of the structure at 2.9 A resolution of the DHNA-HPPK (SulD) bifunctional enzyme complex from the respiratory pathogen Streptococcus pneumoniae. In the crystal, DHNA is assembled as a core octamer, with 422 point group symmetry, although the enzyme is active as a tetramer in solution. Individual HPPK monomers are arranged at the ends of the DHNA octamer, making relatively few contacts with the DHNA domain, but more extensive interactions with adjacent HPPK domains. As a result, the structure forms an elongated cylinder, with the HPPK domains forming two tetramers at each end. The active sites of both enzymes face outward, and there is no clear channel between them that could be used for channelling substrates. The HPPK-HPPK interface accounts for about one-third of the total area between adjacent monomers in SulD, and has levels of surface complementarity comparable to that of the DHNA-DHNA interfaces. There is no "linker" polypeptide between DHNA and HPPK, reducing the conformational flexibility of the HPPK domain relative to the DHNA domain. The implications for the organisation of bi- and trifunctional enzyme complexes within the folate biosynthesis pathway are discussed.  相似文献   

2.
In Saccharomyces cerevisiae and other fungi, the enzymes dihydroneopterin aldolase, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) are encoded by a polycistronic gene that is translated into a single polypeptide having all three functions. These enzymatic functions are essential to both prokaryotes and lower eukaryotes, and catalyse sequential reactions in folate biosynthesis. Deletion or disruption of either function leads to cell death. These enzymes are absent from mammals and thus make ideal antimicrobial targets. DHPS is currently the target of antifolate therapy for a number of infectious diseases, and its activity is inhibited by sulfonamides and sulfones. These drugs are typically used as part of a synergistic cocktail with the 2,4-diaminopyrimidines that inhibit dihydrofolate reductase. A gene encoding the S.cerevisiae HPPK and DHPS enzymes has been cloned and expressed in Escherichia coli. A complex of the purified bifunctional polypeptide with a pterin monophosphate substrate analogue has been crystallized, and its structure solved by molecular replacement and refined to 2.3A resolution. The polypeptide consists of two structural domains, each of which closely resembles its respective monofunctional bacterial HPPK and DHPS counterpart. The mode of ligand binding is similar to that observed in the bacterial enzymes. The association between the domains within the polypeptide as well as the quaternary association of the polypeptide via its constituent DHPS domains provide insight into the assembly of the trifunctional enzyme in S.cerevisiae and probably other fungal species.  相似文献   

3.
6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the Mg(2+)-dependent pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP). The reaction follows a bi-bi mechanism with ATP as the first substrate and AMP and HP pyrophosphate (HPPP) as the two products. HPPK is a key enzyme in the folate biosynthetic pathway and is essential for microorganisms but absent from mammals. For the HPPK-catalyzed pyrophosphoryl transfer, a reaction coordinate is constructed on the basis of the thermodynamic and transient kinetic data we reported previously, and the reaction trajectory is mapped out with five three-dimensional structures of the enzyme at various liganded states. The five structures are apo-HPPK (ligand-free enzyme), HPPK.MgATP(analog) (binary complex of HPPK with its first substrate) and HPPK.MgATP(analog).HP (ternary complex of HPPK with both substrates), which we reported previously, and HPPK.AMP.HPPP (ternary complex of HPPK with both product molecules) and HPPK.HPPP (binary complex of HPPK with one product), which we present in this study.  相似文献   

4.
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the pyrophosphorylation of 6-hydroxymethyl-7,8-dihydropterin (HMDP) by ATP to form 6-hydroxymethyl-7,8-dihydropterin pyrophosphate, an intermediate in the pathway for folic acid biosynthesis. The enzyme has been identified as a potential target for antimicrobial drugs. Equilibrium binding studies showed that Escherichia coli HPPK-bound ATP or the nonhydrolyzable ATP analogue alpha, beta-methyleneadenosine triphosphate (AMPCPP) with high affinity. The fluorescent ATP analogue 2'(3')-O-(N-methylanthraniloyl) adenosine 5'-triphosphate (MANT-ATP) exhibited a substantial fluorescence enhancement upon binding to HPPK, with an equilibrium dissociation constant comparable with that for ATP (10.4 and 4.5 micrometer, respectively). The apoenzyme did not bind the second substrate HMDP, however, unless AMPCPP was present, suggesting that the enzyme binds ATP first, followed by HMDP. Equilibrium titration of HPPK into HMDP and AMPCPP showed an enhancement of fluorescence from the pterin ring of the substrate, and a dissociation constant of 36 nm was deduced for HMDP binding to the HPPK.AMPCPP binary complex. Stopped flow fluorimetry measurements showed that the rate constants for the binding of MANT-ATP and AMPCPP to HPPK were relatively slow (3.9 x 10(5) and 1.05 x 10(5) m(-1) s(-1), respectively) compared with the on rate for binding of HMDP to the HPPK.AMPCPP binary complex. The significance of these results with respect to the crystal structures of HPPK is discussed.  相似文献   

5.
Enzymatic catalysis has conflicting structural requirements of the enzyme. In order for the enzyme to form a Michaelis complex, the enzyme must be in an open conformation so that the substrate can get into its active center. On the other hand, in order to maximize the stabilization of the transition state of the enzymatic reaction, the enzyme must be in a closed conformation to maximize its interactions with the transition state. The conflicting structural requirements can be resolved by a flexible active center that can sample both open and closed conformational states. For a bisubstrate enzyme, the Michaelis complex consists of two substrates in addition to the enzyme. The enzyme must remain flexible upon the binding of the first substrate so that the second substrate can get into the active center. The active center is fully assembled and stabilized only when both substrates bind to the enzyme. However, the side-chain positions of the catalytic residues in the Michaelis complex are still not optimally aligned for the stabilization of the transition state, which lasts only approximately 10(-13) s. The instantaneous and optimal alignment of catalytic groups for the transition state stabilization requires a dynamic enzyme, not an enzyme which undergoes a large scale of movements but an enzyme which permits at least a small scale of adjustment of catalytic group positions. This review will summarize the structure, catalytic mechanism, and dynamic properties of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase and examine the role of protein conformational dynamics in the catalysis of a bisubstrate enzymatic reaction.  相似文献   

6.
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is an essential enzyme in the microbial folate biosynthetic pathway. This pathway has proven to be an excellent target for antimicrobial development, but widespread resistance to common therapeutics including the sulfa drugs has stimulated interest in HPPK as an alternative target in the pathway. A screen of a pterin-biased compound set identified several HPPK inhibitors that contain an aryl substituted 8-thioguanine scaffold, and structural analyses showed that these compounds engage the HPPK pterin-binding pocket and an induced cryptic pocket. A preliminary structure activity relationship profile was developed from biophysical and biochemical characterizations of derivative molecules. Also, a similarity search identified additional scaffolds that bind more tightly within the HPPK pterin pocket. These inhibitory scaffolds have the potential for rapid elaboration into novel lead antimicrobial agents.  相似文献   

7.
Blaszczyk J  Li Y  Wu Y  Shi G  Ji X  Yan H 《Biochemistry》2004,43(6):1469-1477
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphoryl group from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP) following an ordered bi-bi mechanism with ATP as the first substrate. The rate-limiting step of the reaction is product release, and the complete active center is assembled and sealed only upon the binding of both ATP and HP. The assembly of the active center involves large conformational changes in three catalytic loops, among which loop 3 undergoes the most dramatic and unusual changes. To investigate the roles of loop 3 in catalysis, we have made a deletion mutant, which has been investigated by biochemical and X-ray crystallographic analysis. The biochemical data showed that the deletion mutation does not have significant effects on the dissociation constants or the rate constants for the binding of the first substrate MgATP or its analogues. The dissociation constant of HP for the mutant increases by a factor of approximately 100, which is due to a large increase in the dissociation rate constant. The deletion mutation causes a shift of the rate-limiting step in the reaction and a decrease in the rate constant for the chemical step by a factor of approximately 1.1 x 10(5). The crystal structures revealed that the deletion mutation does not affect protein folding, but the catalytic center of the mutant is not fully assembled even upon the formation of the ternary complex and is not properly sealed. The results together suggest that loop 3 is dispensable for the folding of the protein and the binding of the first substrate MgATP, but is required for the assembling and sealing of the active center. The loop plays an important role in the stabilization of the ternary complex and is critical for catalysis.  相似文献   

8.
Li G  Felczak K  Shi G  Yan H 《Biochemistry》2006,45(41):12573-12581
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), leading to the biosynthesis of folate cofactors. HPPK undergoes dramatic conformational changes during its catalytic cycle, and the conformational changes are essential for enzymatic catalysis. Thus, the enzyme is not only an attractive target for developing antimicrobial agents but also an excellent model system for studying the catalytic mechanism of enzymatic pyrophosphoryl transfer as well as the role of protein dynamics in enzymatic catalysis. In the present study, we report the NMR solution structures of the binary complex HPPK*MgAMPCPP and the ternary complex HPPK*MgAMPCPP*DMHP, where alpha,beta-methyleneadenosine triphosphate (AMPCPP) and 7, 7-dimethyl-6-hydroxypterin (DMHP) are the analogues of the substrates ATP and HP, respectively. The results suggest that the three catalytic loops of the binary complex of HPPK can assume multiple conformations in slow exchanges as evidenced by multiple sets of NMR signals for several residues in loops 2 and 3 and the very weak or missing NH cross-peaks for several residues in loops 1 and 3. However, the ternary complex shows only one set of NMR signals, and the cross-peak intensities are rather uniform, suggesting that the binding of the second substrate shifts the multiple conformations of the binary complex to an apparently single conformation of the ternary complex. The NMR behaviors and conformations of the binary complex HPPK*MgAMPCPP are significantly different from those of HPPK in complex with Mgbeta,gamma-methyleneadenosine triphosphate (MgAMPPCP). It is suggested that the conformational properties of the binary substrate complex HPPK*MgATP be represented by those of HPPK*MgAMPCPP, because MgAMPCPP is a better MgATP analogue for HPPK with respect to both binding affinity and bound conformation.  相似文献   

9.
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), a key enzyme in the folate biosynthetic pathway, catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin. The enzyme is essential for microorganisms, is absent from humans, and is not the target for any existing antibiotics. Therefore, HPPK is an attractive target for developing novel antimicrobial agents. Previously, we characterized the reaction trajectory of HPPK-catalyzed pyrophosphoryl transfer and synthesized a series of bisubstrate analog inhibitors of the enzyme by linking 6-hydroxymethylpterin to adenosine through 2, 3, or 4 phosphate groups. Here, we report a new generation of bisubstrate analog inhibitors. To improve protein binding and linker properties of such inhibitors, we have replaced the pterin moiety with 7,7-dimethyl-7,8-dihydropterin and the phosphate bridge with a piperidine linked thioether. We have synthesized the new inhibitors, measured their K(d) and IC(50) values, determined their crystal structures in complex with HPPK, and established their structure-activity relationship. 6-Carboxylic acid ethyl ester-7,7-dimethyl-7,8-dihydropterin, a novel intermediate that we developed recently for easy derivatization at position 6 of 7,7-dimethyl-7,8-dihydropterin, offers a much high yield for the synthesis of bisubstrate analogs than that of previously established procedure.  相似文献   

10.
The crystal structure of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) in complex with MgADP has been determined at 1.5-A resolution with a crystallographic R factor of 0.191. The solution structure of HPPK in complex with Mg(2+) and beta,gamma-methyleneadenosine 5'-triphosphate (MgAMPPCP) has been determined using a simulated annealing protocol with 3,523 experimental NMR restraints. The root mean square deviation of the ensemble of 20 refined conformers that represent the solution structure from the mean coordinate set derived from them is 0.74 +/- 0.26 A for all backbone atoms and 0.49 +/- 0.22 A when residues Pro(14), Pro(44)-Gln(50), and Arg(84)-Pro(91) are excluded. Binding of MgADP causes significant changes in the conformation and dynamical property of three loops of HPPK that are involved in catalysis. A dramatic, unusual conformational change is that loop 3 moves away from the active center significantly with some residues moving by >17 A. The binding of MgADP also stabilizes loop 1 and loop 3 but makes loop 2 more mobile. Very similar conformational and dynamical changes are observed in the NMR solution structure of HPPK.MgAMPPCP. The conformational and dynamical changes may play important roles in both substrate binding and product release in the catalytic cycle.  相似文献   

11.
BACKGROUND: Folate cofactors are essential for life. Mammals derive folates from their diet, whereas most microorganisms must synthesize folates de novo. Enzymes of the folate pathway therefore provide ideal targets for the development of antimicrobial agents. 6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), the first reaction in the folate biosynthetic pathway. RESULTS: The crystal structure of HPPK from Escherichia coli has been determined at 1.5 A resolution with a crystallographic R factor of 0.182. The HPPK molecule has a novel three-layered alpha beta alpha fold that creates a valley approximately 26 A long, 10 A wide and 10 A deep. The active center of HPPK is located in the valley and the substrate-binding sites have been identified with the aid of NMR spectroscopy. The HP-binding site is located at one end of the valley, near Asn55, and is sandwiched between two aromatic sidechains. The ATP-binding site is located at the other end of the valley. The adenine base of ATP is positioned near Leu111 and the ribose and the triphosphate extend across and reach the vicinity of HP. CONCLUSIONS: The HPPK structure provides a framework to elucidate structure/function relationships of the enzyme and to analyze mechanisms of pyrophosphoryl transfer. Furthermore, this work may prove useful in the structure-based design of new antimicrobial agents.  相似文献   

12.
Li Y  Gong Y  Shi G  Blaszczyk J  Ji X  Yan H 《Biochemistry》2002,41(27):8777-8783
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7,8-dihydropterin (HMDP). Because HPPK is essential for microorganisms but is absent from human and animals, the enzyme is an excellent target for developing antimicrobial agent. Thermodynamic analysis shows that Mg(2+) is important not only for the binding of nucleotides but also for the binding of HMDP. Transient kinetic analysis shows that a step or steps after the chemical transformation are rate-limiting in the reaction catalyzed by HPPK. The pre-steady-state kinetics is composed of a burst phase and a steady-state phase. The rate constant for the burst phase is approximately 50 times larger than that for the steady-state phase. The latter is very similar to the k(cat) value measured by steady-state kinetics. A set of rate constants for the individual steps of the HPPK-catalyzed reaction has been determined by a combination of stopped-flow and quench-flow analyses. These results form a thermodynamic and kinetic framework for dissecting the roles of active site residues in the substrate binding and catalysis by HPPK.  相似文献   

13.
Shi G  Shaw G  Li Y  Wu Y  Yan H  Ji X 《Bioorganic & medicinal chemistry》2012,20(14):4303-4309
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK), a key enzyme in the folate biosynthesis pathway catalyzing the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin, is an attractive target for developing novel antimicrobial agents. Previously, we studied the mechanism of HPPK action, synthesized bisubstrate analog inhibitors by linking 6-hydroxymethylpterin to adenosine through phosphate groups, and developed a new generation of bisubstrate inhibitors by replacing the phosphate bridge with a piperidine-containing linkage. To further improve linker properties, we have synthesized a new compound, characterized its protein binding/inhibiting properties, and determined its structure in complex with HPPK. Surprisingly, this inhibitor exhibits a new binding mode in that the adenine base is flipped when compared to previously reported structures. Furthermore, the side chain of amino acid residue E77 is involved in protein-inhibitor interaction, forming hydrogen bonds with both 2' and 3' hydroxyl groups of the ribose moiety. Residue E77 is conserved among HPPK sequences, but interacts only indirectly with the bound MgATP via water molecules. Never observed before, the E77-ribose interaction is compatible only with the new inhibitor-binding mode. Therefore, this compound represents a new direction for further development.  相似文献   

14.
Blaszczyk J  Li Y  Shi G  Yan H  Ji X 《Biochemistry》2003,42(6):1573-1580
6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP), the first reaction in the folate biosynthetic pathway. Arginine residues 82 and 92, strictly conserved in 35 HPPK sequences, play dynamic roles in the catalytic cycle of the enzyme. At 0.89-A resolution, two distinct conformations are observed for each of the two residues in the crystal structure of the wild-type HPPK in complex with two HP variants, two Mg(2+) ions, and an ATP analogue. Structural information suggests that R92 first binds to the alpha-phosphate group of ATP and then shifts to interact with the beta-phosphate as R82, which initially does not bind to ATP, moves in and binds to alpha-phosphate when the pyrophosphoryl transfer is about to occur. The dynamic roles of R82 and R92 are further elucidated by five more crystal structures of two mutant proteins, R82A and R92A, with and without bound ligands. Two oxidized forms of HP are observed with an occupancy ratio of 0.50:0.50 in the 0.89-A structure. The oxidation of HP has significant impact on its binding to the protein as well as the conformation of nearby residue W89.  相似文献   

15.
Li Y  Wu Y  Blaszczyk J  Ji X  Yan H 《Biochemistry》2003,42(6):1581-1588
The roles of a pair of conserved positively charged residues R82 and R92 at a catalytic loop of Escherichia coli 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) have been investigated by site-directed mutagenesis and biochemical analysis. In the structure of HPPK in complex with ATP and a 6-hydroxymethyl-7,8-dihydropterin (HP) analogue, the guanidinium group of R82 forms two hydrogen bonds with the alpha-phosphate and that of R92 two hydrogen bonds with the beta-phosphate. In the structure of HPPK in complex with alpha,beta-methyleneadenosine triphosphate (AMPCPP, an ATP analogue) and HP, the guanidinium group of R82 has no direct interaction with AMPCPP and that of R92 forms two hydrogen bonds with the alpha-phosphate. Substitution of R82 with alanine caused a decrease in the rate constant for the chemical step by a factor of approximately 380, but there were no significant changes in the binding energy or binding kinetics of either substrate. Substitution of R92 with alanine caused a decrease in the rate constant for the chemical step by a factor of approximately 3.5 x 10(4). The mutation caused no significant changes in the binding energy or binding kinetics of MgATP. It did not cause a significant change in the binding energy of HP either but caused a decrease in the association rate constant for the binding of HP by a factor of approximately 4.5 and a decrease in the dissociation rate constant by a factor of approximately 10. The overall structures of the ternary complexes of both mutants were very similar to the corresponding structure of wild-type HPPK as described in the companion paper. The results suggest that R82 does not contribute to the binding of either substrate, and R92 is dispensable for the binding of MgATP but plays a role in facilitating the binding of HP. Both R82 and R92 are important for catalysis, and R92 plays a critical role in the transition state stabilization.  相似文献   

16.
In pea leaves, the synthesis of 7,8-dihydropteroate, a primary step in folate synthesis, was only detected in mitochondria. This reaction is catalyzed by a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase enzyme, which represented 0.04-0.06% of the matrix proteins. The enzyme had a native mol. wt of 280-300 kDa and was made up of identical subunits of 53 kDa. The reaction catalyzed by the 7,8-dihydropteroate synthase domain of the protein was Mg2+-dependent and behaved like a random bireactant system. The related cDNA contained an open reading frame of 1545 bp and the deduced amino acid sequence corresponded to a polypeptide of 515 residues with a calculated M(r) of 56,454 Da. Comparison of the deduced amino acid sequence with the N-terminal sequence of the purified protein indicated that the plant enzyme is synthesized with a putative mitochondrial transit peptide of 28 amino acids. The calculated M(r) of the mature protein was 53,450 Da. Southern blot experiments suggested that a single-copy gene codes for the enzyme. This result, together with the facts that the protein is synthesized with a mitochondrial transit peptide and that the activity was only detected in mitochondria, strongly supports the view that mitochondria is the major (unique?) site of 7,8-dihydropteroate synthesis in higher plant cells.  相似文献   

17.
6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) catalyzes the transfer of pyrophosphate from ATP to 6-hydroxymethyl-7, 8-dihydropterin, the first reaction in the folate biosynthetic pathway. Like other enzymes in the folate pathway, HPPK is an ideal target for development of antimicrobial agents because the enzyme is essential for microorganisms but is absent from humans and animals. Using 3'(2')-o-anthraniloyladenosine 5'-triphosphate as a fluorescent probe, a fluorometric competitive binding assay has been developed for measuring the dissociation constants of various compounds that bind to the ATP site of HPPK. The fluorometric assay has been used to determine the nucleotide specificity and dissect the energetics of the binding of MgATP. The order of affinity of various nucleoside triphosphates for HPPK is MgATP>MgGTP>MgITP>MgXTP approximately MgUTP approximately MgCTP. The affinity of MgATP for HPPK (K(d)=2.6+/-0.06 microM) is 260-fold higher than that of MgGTP and more than 1000-fold higher than those of the other nucleoside triphosphates, indicating that HPPK is highly specific with respect to the base moiety of the nucleotide. The affinity of ATP for HPPK in the presence of Mg(2+) is 15 times that in the absence of Mg(2+), indicating that the metal ion is important for the binding of the nucleotide. Removal of the gamma-phosphate from MgATP reduces its affinity for HPPK by a factor of approximately 21. The affinity of AMP for HPPK is about one third that of ADP and almost the same as that of adenosine. The result suggests that among the three phosphoryl groups of MgATP, the gamma-phosphoryl group is most critical for binding to HPPK and the alpha-phosphoryl group contributes little to the binding of the nucleotide. The affinity of MgATP is 18 times that of MgdATP, indicating that the 2'-hydroxyl group of MgATP is also important for binding. van't Hoff analysis suggests that binding of MgATP is mainly driven by enthalpy at 25 degrees C and the entropy of binding is also in favor of the formation of the HPPK.MgATP complex.  相似文献   

18.
19.
Structural investigation of the capsular antigen from Haemophilus influenzae type a has shown it to be composed of 4-O-beta-D-glucopyranosyl-D-ribitol residues joined through phosphoric diester linkages between O-4 of D-glucose and O-5 of D-ribitol. Chemical degradations and 13C-n.m.r. spectroscopy were the main methods used.  相似文献   

20.
Dephospho-coenzyme A kinase catalyzes the final step in CoA biosynthesis, the phosphorylation of the 3'-hydroxyl group of ribose using ATP as a phosphate donor. The protein from Haemophilus influenzae was cloned and expressed, and its crystal structure was determined at 2.0-A resolution in complex with ATP. The protein molecule consists of three domains: the canonical nucleotide-binding domain with a five-stranded parallel beta-sheet, the substrate-binding alpha-helical domain, and the lid domain formed by a pair of alpha-helices. The overall topology of the protein resembles the structures of nucleotide kinases. ATP binds in the P-loop in a manner observed in other kinases. The CoA-binding site is located at the interface of all three domains. The double-pocket structure of the substrate-binding site is unusual for nucleotide kinases. Amino acid residues implicated in substrate binding and catalysis have been identified. The structure analysis suggests large domain movements during the catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号