首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of structural compensation between the lengths of two perpendicularly oriented RNA double helices was found in the archaeal selenocysteine tRNA from Methanococcus jannascii. This tRNA contains only four base-pairs in the T-stem, one base-pair less than in all other cytosolic tRNAs. Our analysis shows that such a T-stem in an otherwise normal tRNA cannot guarantee the formation of the normal interactions between the D and T-loops. The absence of these interactions would affect the juxtaposition of the two tRNA helical domains, potentially damaging the tRNA function. In addition to the short T-stem, this tRNA possesses another unprecedented feature, a very long D-stem consisting of seven base-pairs. Taken as such, a seven base-pair D-stem will also disrupt the normal interaction between the D and T-loops. On the other hand, the presence of the universal nucleotides in both the D and T-loops suggests that these loops probably interact with each other in the same way as in other tRNAs. Here, we demonstrate that the short T-stem and the long D-stem can naturally compensate each other, thus providing the normal D/T interactions. Molecular modeling has helped suggest a detailed scheme of mutual compensation between these two unique structural aspects of the archaeal selenocysteine tRNA. In the light of this analysis, other structural and functional characteristics of the selenocysteine tRNAs are discussed.  相似文献   

2.
Bacterial selenocysteine synthase converts seryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec) for selenoprotein biosynthesis. The identity of this enzyme in archaea and eukaryotes is unknown. On the basis of sequence similarity, a conserved open reading frame has been annotated as a selenocysteine synthase gene in archaeal genomes. We have determined the crystal structure of the corresponding protein from Methanococcus jannaschii, MJ0158. The protein was found to be dimeric with a distinctive domain arrangement and an exposed active site, built from residues of the large domain of one protomer alone. The shape of the dimer is reminiscent of a substructure of the decameric Escherichia coli selenocysteine synthase seen in electron microscopic projections. However, biochemical analyses demonstrated that MJ0158 lacked affinity for E. coli seryl-tRNA(Sec) or M. jannaschii seryl-tRNA(Sec), and neither substrate was directly converted to selenocysteinyl-tRNA(Sec) by MJ0158 when supplied with selenophosphate. We then tested a hypothetical M. jannaschii O-phosphoseryl-tRNA(Sec) kinase and demonstrated that the enzyme converts seryl-tRNA(Sec) to O-phosphoseryl-tRNA(Sec) that could constitute an activated intermediate for selenocysteinyl-tRNA(Sec) production. MJ0158 also failed to convert O-phosphoseryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec). In contrast, both archaeal and bacterial seryl-tRNA synthetases were able to charge both archaeal and bacterial tRNA(Sec) with serine, and E. coli selenocysteine synthase converted both types of seryl-tRNA(Sec) to selenocysteinyl-tRNA(Sec). These findings demonstrate that a number of factors from the selenoprotein biosynthesis machineries are cross-reactive between the bacterial and the archaeal systems but that MJ0158 either does not encode a selenocysteine synthase or requires additional factors for activity.  相似文献   

3.
The prokaryotic tubulin homolog FtsZ polymerizes into a ring structure essential for bacterial cell division. We have used refolded FtsZ to crystallize a tubulin-like protofilament. The N- and C-terminal domains of two consecutive subunits in the filament assemble to form the GTPase site, with the C-terminal domain providing water-polarizing residues. A domain-swapped structure of FtsZ and biochemical data on purified N- and C-terminal domains show that they are independent. This leads to a model of how FtsZ and tubulin polymerization evolved by fusing two domains. In polymerized tubulin, the nucleotide-binding pocket is occluded, which leads to nucleotide exchange being the rate-limiting step and to dynamic instability. In our FtsZ filament structure the nucleotide is exchangeable, explaining why, in this filament, nucleotide hydrolysis is the rate-limiting step during FtsZ polymerization. Furthermore, crystal structures of FtsZ in different nucleotide states reveal notably few differences.  相似文献   

4.
Cysteine is ligated to tRNA(Cys) by cysteinyl-tRNA synthetase in most organisms. However, in methanogenic archaea lacking cysteinyl-tRNA synthetase, O-phosphoserine is ligated to tRNA(Cys) by O-phosphoseryl-tRNA synthetase (SepRS), and the phosphoseryl-tRNA(Cys) is converted to cysteinyl-tRNA(Cys). In this study, we determined the crystal structure of the SepRS tetramer in complex with tRNA(Cys) and O-phosphoserine at 2.6-A resolution. The catalytic domain of SepRS recognizes the negatively charged side chain of O-phosphoserine at a noncanonical site, using the dipole moment of a conserved alpha-helix. The unique C-terminal domain specifically recognizes the anticodon GCA of tRNA(Cys). On the basis of the structure, we engineered SepRS to recognize tRNA(Cys) mutants with the anticodons UCA and CUA and clarified the anticodon recognition mechanism by crystallography. The mutant SepRS-tRNA pairs may be useful for translational incorporation of O-phosphoserine into proteins in response to the stop codons UGA and UAG.  相似文献   

5.
6.
7.
8.
Electron paramagnetic resonance-based inter-residue distance measurements between site-directed spin-labelled sites of sensory rhodopsin II (NpSRII) and its transducer NpHtrII from Natronobacterium pharaonis revealed a 2:2 complex with 2-fold symmetry. The core of the complex is formed by the four transmembrane helices of a transducer dimer. Upon light excitation, the previously reported flap-like movement of helix F of NpSRII induces a conformational change in the transmembrane domain of the transducer. The inter-residue distance changes determined provide strong evidence for a rotary motion of the second transmembrane helix of the transducer. This helix rotation becomes uncoupled from changes in the receptor during the last step of the photocycle.  相似文献   

9.
Helicase-nuclease systems dedicated to DNA end resection in preparation for homologous recombination (HR) are present in all kingdoms of life. In thermophilic archaea, the HerA helicase and NurA nuclease cooperate with the highly conserved Mre11 and Rad50 proteins during HR-dependent DNA repair. Here we show that HerA and NurA must interact in a complex with specific subunit stoichiometry to process DNA ends efficiently. We determine crystallographically that NurA folds in a toroidal dimer of intertwined RNaseH-like domains. The central channel of the NurA dimer is too narrow for double-stranded DNA but appears well suited to accommodate one or two strands of an unwound duplex. We map a critical interface of the complex to an exposed hydrophobic epitope of NurA abutting the active site. Based upon the presented evidence, we propose alternative mechanisms of DNA end processing by the HerA-NurA complex.  相似文献   

10.
11.
12.
In this study we gain insight into the structural and functional characterization of the Aeropyrum pernix oligopeptide-binding protein (OppA(Ap)) previously identified from the extracellular medium of an Aeropyrum pernix cell culture at late stationary phase. OppA(Ap) showed an N-terminal Q32 in a pyroglutamate form and C-terminal processing at the level of a threonine-rich region probably involved in protein membrane anchoring. Moreover, the OppA(Ap) protein released into the medium was identified as a "nicked" form composed of two tightly associated fragments detachable only under strong denaturing conditions. The cleavage site E569-G570 seems be located on an exposed surface loop that is highly conserved in several three-dimensional (3D) structures of dipeptide/oligopeptide-binding proteins from different sources. Structural and biochemical properties of the nicked protein were virtually indistinguishable from those of the intact form. Indeed, studies of the entire bacterially expressed OppA(Ap) protein owning the same N and C termini of the nicked form supported these findings. Moreover, in the middle exponential growth phase, OppA(Ap) was found as an intact cell membrane-associated protein. Interestingly, the native exoprotein OppA(Ap) was copurified with a hexapeptide (EKFKIV) showing both lysines methylated and possibly originating from an A. pernix endogenous stress-induced lipoprotein. Therefore, the involvement of OppA(Ap) in the recycling of endogenous proteins was suggested to be a potential physiological function. Finally, a new OppA from Sulfolobus solfataricus, SSO1288, was purified and preliminarily characterized, allowing the identification of a common structural/genetic organization shared by all "true" archaeal OppA proteins of the dipeptide/oligopeptide class.  相似文献   

13.
Archaea make glutaminyl-tRNA (Gln-tRNAGln) in a two-step process; a non-discriminating glutamyl-tRNA synthetase (ND-GluRS) forms Glu-tRNAGln, while the heterodimeric amidotransferase GatDE converts this mischarged tRNA to Gln-tRNAGln. Many prokaryotes synthesize asparaginyl-tRNA (Asn-tRNAAsn) in a similar manner using a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) and the heterotrimeric amidotransferase GatCAB. The transamidosome, a complex of tRNA synthetase, amidotransferase and tRNA, was first described for the latter system in Thermus thermophilus [Bailly, M., Blaise, M., Lorber, B., Becker, H.D. and Kern, D. (2007) The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNA-dependent asparagine biosynthesis. Mol. Cell, 28, 228–239.]. Here, we show a similar complex for Gln-tRNAGln formation in Methanothermobacter thermautotrophicus that allows the mischarged Glu-tRNAGln made by the tRNA synthetase to be channeled to the amidotransferase. The association of archaeal ND-GluRS with GatDE (KD = 100 ± 22 nM) sequesters the tRNA synthetase for Gln-tRNAGln formation, with GatDE reducing the affinity of ND-GluRS for tRNAGlu by at least 13-fold. Unlike the T. thermophilus transamidosome, the archaeal complex does not require tRNA for its formation, is not stable through product (Gln-tRNAGln) formation, and has no major effect on the kinetics of tRNAGln glutamylation nor transamidation. The differences between the two transamidosomes may be a consequence of the fact that ND-GluRS is a class I aminoacyl-tRNA synthetase, while ND-AspRS belongs to the class II family.  相似文献   

14.
15.
16.
17.
Discovered two decades ago, Piwi-interacting RNAs (piRNAs) play critical roles in gene regulation, transposon element repression, and antiviral defense. Dysregulation of piRNAs has been noted in diverse human diseases including cancers. Recently, extensive studies have revealed that many more proteins are involved in piRNA biogenesis. This review will summarize the recent progress in piRNA biogenesis and functions, especially the molecular mechanisms by which piRNA biogenesis-related proteins contribute to piRNA processing.  相似文献   

18.
19.
20.
The process of clathrin-mediated endocytosis from the plasma membrane has been the subject of many biological and biochemical investigations. Recent atomic resolution structures determined by X-ray crystallography now enable the molecular basis for the interactions of some components of the endocytic machinery to be understood in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号