首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Pneumococcal Virulence Factors: Structure and Function   总被引:22,自引:0,他引:22       下载免费PDF全文
The overall goal for this review is to summarize the current body of knowledge about the structure and function of major known antigens of Streptococcus pneumoniae, a major gram-positive bacterial pathogen of humans. This information is then related to the role of these proteins in pneumococcal pathogenesis and in the development of new vaccines and/or other antimicrobial agents. S. pneumoniae is the most common cause of fatal community-acquired pneumonia in the elderly and is also one of the most common causes of middle ear infections and meningitis in children. The present vaccine for the pneumococcus consists of a mixture of 23 different capsular polysaccharides. While this vaccine is very effective in young adults, who are normally at low risk of serious disease, it is only about 60% effective in the elderly. In children younger than 2 years the vaccine is ineffective and is not recommended due to the inability of this age group to mount an antibody response to the pneumococcal polysaccharides. Antimicrobial drugs such as penicillin have diminished the risk from pneumococcal disease. Several pneumococcal proteins including pneumococcal surface proteins A and C, hyaluronate lyase, pneumolysin, autolysin, pneumococcal surface antigen A, choline binding protein A, and two neuraminidase enzymes are being investigated as potential vaccine or drug targets. Essentially all of these antigens have been or are being investigated on a structural level in addition to being characterized biochemically. Recently, three-dimensional structures for hyaluronate lyase and pneumococcal surface antigen A became available from X-ray crystallography determinations. Also, modeling studies based on biophysical measurements provided more information about the structures of pneumolysin and pneumococcal surface protein A. Structural and biochemical studies of these pneumococcal virulence factors have facilitated the development of novel antibiotics or protein antigen-based vaccines as an alternative to polysaccharide-based vaccines for the treatment of pneumococcal disease.  相似文献   

2.
Streptococcus pneumoniae cell wall and cytoplasmic proteins contribute directly to pathogenesis of pneumococcal infection. Protective effect of pneumococcal proteins such as pneumolysin (Ply), muramylamidase (LytA) and pneumococcal surface protein A (PspA). There is discussion in the literature about development of conjugared pneumococcal vaccines, which should include polysaccharides of invasive serotypes of pneumococci as well as protein antigens of this pathogen, for prevention of infections caused by S. pneumoniae. Researches suggest that such hybrid vaccines will be effective, first of all, for children < 2 years of age and elderly > 65 years old because immune response to polysaccharide vaccines either do not form at all or insufficient for prevention of pneumococcal infection.  相似文献   

3.
The problem of pneumococcal infections is pressing for the whole world. Existing vaccines based only on pneumococci polysaccharide antigens or polysaccharide antigens and diphtherial anatoxin are not capable of protecting from all serotypes of the microorganism. Reasonability of creation of pneumococcal vaccine based on surface proteins of Streptococcus pneumoniae is discussed in the literature. One of such key pneumococcal proteins is pneumococcal surface protein A (PSPA), because it is detected in all the S. pneumoniae strains, has cross activity and switches B-cell immune response to T-cell. Currently the development of conjugated vaccine based on surface proteins and capsule polysaccharides of pneumococcus seems promising.  相似文献   

4.
Novel vaccine strategies with protein antigens of Streptococcus pneumoniae   总被引:5,自引:0,他引:5  
Infections caused by Streptococcus pneumoniae (pneumococcus) are a major cause of mortality throughout the world. This organism is primarily a commensal in the upper respiratory tract of humans, but can cause pneumonia in high-risk persons and disseminate from the lungs by invasion of the bloodstream. Currently, prevention of pneumococcal infections is by immunization with vaccines which contain capsular polysaccharides from the most common serotypes causing invasive disease. However, there are more than 90 antigenically distinct serotypes and there is concern that serotypes not included in the vaccines may become more prevalent in the face of continued use of polysaccharide vaccines. Also, certain high-risk groups have poor immunological responses to some of the polysaccharides in the vaccine formulations. Protein antigens that are conserved across all capsular serotypes would induce more effective and durable humoral immune responses and could potentially protect against all clinically relevant pneumococcal capsular types. This review provides a summary of work on pneumococcal proteins that are being investigated as components for future generations of improved pneumococcal vaccines.  相似文献   

5.
Streptococcus pneumoniae is a major bacterial respiratory pathogen. Current licensed pneumococcal polysaccharide and polysaccharide–protein conjugate vaccines are administered by an intramuscular injection. In order to develop a new-generation vaccine that can be administered in a needle-free mucosal manner, we have constructed early 1 and 3 gene regions (E1/E3) deleted, replication-defective adenoviral vectors encoding pneumococcal surface antigen A (PsaA), the N-fragment of pneumococcal surface protein A (N-PspA), and the detoxified mutant pneumolysin (PdB) from S. pneumoniae strain D39. Intranasal vaccination with the three adenoviral vectors (Ad/PsaA, Ad/N-PspA, and Ad/PdB) in mice resulted in robust antigen-specific serum immunoglobulin G responses, as demonstrated by an enzyme-linked immunosorbent assay. In addition, nasal mucosal vaccination with the combination of the three adenoviral vectors conferred protection against S. pneumoniae strain D39 colonization in mouse lungs. Taken together, these data demonstrate the feasibility of developing a mucosal vaccine against S. pneumoniae using recombinant adenoviruses for antigen delivery.  相似文献   

6.
The 7-valent polysaccharide conjugate vaccine currently administered against Streptococcus pneumoniae has been shown to be highly effective in high risk-groups, but its use in developing countries will probably not be possible due to high costs. The use of conserved protein antigens using the genetic vaccination strategy is an interesting alternative for the development of a cost-effective vaccine. We have analyzed the potential of DNA vaccines expressing genetically detoxified derivatives of pneumolysin (pneumolysoids) against pneumococcal infections, and compared this with immunization using recombinant protein. The purified recombinant pneumolysoid with the highest residual cytolytic activity was able to confer partial protection against a lethal intraperitoneal challenge, with the induction of high antibody levels. Immunization with DNA vaccines expressing pneumolysoids, on the other hand, induced a significantly lower antibody response and no protection was observed.  相似文献   

7.
Although pneumococcal conjugate vaccines are close to being licensed, a more profound knowledge of the virulence factors responsible for the morbidity and mortality caused by Streptococcus pneumoniae is necessary. This review deals with the major structures of pneumococci involved in the pathogenesis of pneumococcal disease and their interference with the defense mechanisms of the host. It is well known that protection against S. pneumoniae is the result of phagocytosis of invading pathogens. For this process, complement and anticapsular polysaccharide antibodies are required. Besides, relatively recent experimental data suggest that protection is also mediated by the removal of disintegrating pneumococci and their degradation products (cell wall, pneumolysin). These structures seem to be major contributors to illness and death caused by pneumococci. An effective conjugate vaccine should therefore preferably include the capsular polysaccharide and at least one of these inflammatory factors.  相似文献   

8.
Streptococcus pneumoniae is a leading cause of mortality in young children. While successful conjugate polysaccharide vaccines exist, a less expensive serotype-independent protein-based pneumococcal vaccine offers a major advancement for preventing life-threatening pneumococcal infections, particularly in developing nations. IL-17A-secreting CD4+ T cells (T(H)17) mediate resistance to mucosal colonization by multiple pathogens including S. pneumoniae. Screening an expression library containing >96% of predicted pneumococcal proteins, we identified antigens recognized by T(H)17 cells from mice immune to pneumococcal colonization. The identified antigens also elicited IL-17A secretion from colonized mouse splenocytes and human PBMCs suggesting that similar responses are primed during natural exposure. Immunization of two mouse strains with identified antigens provided protection from pneumococcal colonization that was significantly diminished in animals treated with blocking CD4 or IL-17A antibodies. This work demonstrates the potential of proteomic screening approaches to identify specific antigens for the design of subunit vaccines against mucosal pathogens via harnessing T(H)17-mediated immunity.  相似文献   

9.
The polysaccharide capsule which surrounds bacterial species such as Haemophilus influenzae, Streptococcus pneumoniae, Neisseria meningitidis and Salmonella typhi is a potent virulence factor by protecting the bacteria from phagocytosis. The host responds with antibody production and specific antibodies plus complement binding to the capsule facilitate opsonization of the micro-organism, which is phagocytized and eliminated. Purified capsular polysaccharides elicit T-independent antibody responses without a memory function, but are often poorly immunogenic in infants where much of the invasive H. influenzae type b (Hib) and pneumococcal infections is seen. Therefore purified polysaccharides have found limited use as vaccines. However, covalent linkage of the capsular polysaccharide, or fractions thereof, to immunogenic carrier proteins creates glycoconjugates which are T-dependent antigens and which elicit antibodies also in infants and which prime for boosting either with the glycoconjugate or the capsular polysaccharide. In the last decade Hib glycoconjugate vaccines have been successfully introduced and in countries with very high immunization coverage the disease has been virtually eliminated and a decline of over 95% has been seen in countries with slightly lower vaccine rates. World-wide use of Hib glycoconjugate vaccines offers the possibility of elimination of invasive Hib disease. Pneumococcal (11 serotypes with coverage of approximately 85% of invasive disease), meningococcal (A, C, W 135, Y but not B) and S. typhi glycoconjugates are in advanced development and offer the prospect of being as successful as the Hib glycoconjugates.  相似文献   

10.
Conjugate vaccines are being widely used since their introduction. Nowadays the interest in these vaccines is still growing and new antigens and conjugate chemistry are being studied and developed. Pneumococcal surface protein A (PspA) is one of the most studied pneumococcal antigens and is an important vaccine candidate. One approach to broaden the conjugate vaccine coverage could be the conjugation of the polysaccharide to a pneumococcal protein such as PspA. Previous results have shown that conjugated recombinant fragment of PspA (rPspA) not only maintained but also in some conjugates improved the induction of protective antibodies raised against the protein carrier. We describe here a characterization study to identify the domains of Streptococcus pneumoniae recombinant PspA (rPspA), from family 1 clade 1 and family 2 clade 3, involved in the conjugation with serotype 6B capsular polysaccharide.  相似文献   

11.
Mouse monoclonal antibodies (mAbs) were developed against Streptococcus pneumoniae in search for potential common pneumococcal proteins as vaccine antigens. mAb 230,B-9 (IgG1) reacted by immunoblotting with a 70-kDa protein which was isolated by immunoaffinity chromatography and subsequent preparative electrophoresis. N-terminal amino acid sequencing showed homology to that of heat shock protein 70 (hsp70). The hsp70 epitope reactive with mAb 230,B-9 was found in all the pneumococci examined as well as in other streptococci and enterococci. The epitope was not expressed in several other examined Gram-positive or -negative bacteria. Pneumococcal hsp70 has by other investigators been proposed to be a vaccine candidate. Binding experiments using flow cytometry showed that the epitope was not surface-exposed on live exponential phase grown S. pneumoniae. Human patient sera did not react with affinity-purified pneumococcal hsp70. Therefore the pneumococcal hsp70 does not seem to be of special interest in a vaccine formulation. The human sera contained antibodies to high molecular proteins co-purified with hsp70. Some of these proteins could be the pneumococcal surface protein A.  相似文献   

12.
To develop safe vaccines for inducing mucosal immunity to major pulmonary bacterial infections, appropriate vaccine antigens (Ags), delivery systems and nontoxic molecular adjuvants must be considered. Such vaccine constructs can induce Ag‐specific immune responses that protect against mucosal infections. In particular, it has been shown that simply mixing the adjuvant with the bacterial Ag is a relatively easy means of constructing adjuvant‐based mucosal vaccine preparations; the resulting vaccines can elicit protective immunity. DNA‐based nasal adjuvants targeting mucosal DCs have been studied in order to induce Ag‐specific mucosal and systemic immune responses that provide essential protection against microbial pathogens that invade mucosal surfaces. In this review, initially a plasmid encoding the cDNA of Flt3 ligand (pFL), a molecule that is a growth factor for DCs, as an effective adjuvant for mucosal immunity to pneumococcal infections, is introduced. Next, the potential of adding unmethylated CpG oligodeoxynucleotide and pFL together with a pneumococcal Ag to induce protection from pneumococcal infections is discussed. Pneumococcal surface protein A has been used as vaccine for restoring mucosal immunity in older persons. Further, our nasal pFL adjuvant system with phosphorylcholine‐keyhole limpet hemocyanin (PC‐KLH) has also been used in pneumococcal vaccine development to induce complete protection from nasal carriage by Streptococcus pneumoniae . Finally, the possibility that anti‐PC antibodies induced by nasal delivery of pFL plus PC‐KLH may play a protective role in prevention of atherogenesis and thus block subsequent development of cardiovascular disease is discussed.
  相似文献   

13.
We have detected a cholesterol-dependent cytolysin, which we have named mitilysin, in a small number of Streptococcus mitis isolates. We have sequenced the mitilysin gene from seven isolates of S. mitis. Comparisons with the pneumococcal pneumolysin gene show 15 amino acid substitutions. S. mitis appear to release mitilysin extracellularly. Certain alleles of mitilysin are not recognized by a monoclonal antibody raised to the related toxin pneumolysin. Based on enzyme-linked immunosorbent assay and neutralization assay results, one isolate of S. mitis may produce a further hemolytic toxin in addition to mitilysin. As genetic exchange is known to occur between S. mitis and Streptococcus pneumoniae, this finding may have implications for the development of vaccines or therapies for pneumococcal disease that are based on pneumolysin.  相似文献   

14.
Experimental human pneumococcal carriage models for vaccine research   总被引:1,自引:0,他引:1  
Pneumococcal conjugate vaccines have had unprecedented success in controlling vaccine-type invasive pneumococcal disease. As serotype replacement and the complexity of designing vaccines to multiple capsular polysaccharides ultimately pose a threat to these vaccines, the development of alternative protein vaccines is important. Protein vaccines offer the promise of extended serotype coverage, reduced cost, and improved protection against otitis media and pneumococcal pneumonia. As placebo-controlled trials are not currently ethically justifiable, human pneumococcal challenge models using prevention of carriage as a test endpoint offer an attractive link between preclinical studies and clinical efficacy trials. Experimental human pneumococcal carriage studies offer a means of describing mechanisms of protection against carriage and a clinical tool to choose between vaccine candidates.  相似文献   

15.
The gene for pneumolysin, the thiol-activated toxin from Streptococcus pneumoniae, has been expressed in Escherichia coli. The recombinant protein has been purified using a rapid, high yield, purification procedure and has been shown to be identical with respect to N-terminal amino-acid sequence, specific activity, effect on human polymorphonuclear phagocytes and effect on human complement to the native toxin purified from the pneumococcus. This provides a large enough source of material to begin investigation of pneumolysin as a candidate for inclusion in a pneumococcal vaccine.  相似文献   

16.
Streptococcus pneumoniae is the main causative agent of acute otitis media in children. Serotype-based vaccines have provided some protection against otitis media, but not as much as anticipated, demonstrating the need for alternative vaccine options. Pneumococcal otitis media isolates were obtained from children 5 years old or younger from hospitals around Mississippi in the prevaccine era (1999-2000). These isolates were compared by capsular typing, pneumococcal surface protein A (PspA) family typing, antibiotic susceptibility, and DNA fingerprinting. Our study shows that there is great genetic variability among pneumococcal clinical isolates of otitis media, except with regard to PspA. Therefore, efforts focused on the development of a PspA-based pneumococcal vaccine would be well placed.  相似文献   

17.
There is considerable interest in pneumococcal protein antigens capable of inducing serotype-independent immunoprotection and of improving, thereby, existing vaccines. We report here on the immunogenic properties of a novel surface antigen encoded by ORF spr1875 in the R6 strain genome. An antigenic fragment encoded by spr1875, designated R4, was identified using a Streptococcus pneumoniae phage displayed genomic library after selection with a human convalescent serum. Immunofluorescence analysis with anti-R4 antisera showed that Spr1875 was expressed on the surface of strains belonging to different serotypes. Moreover, the gene was present with little sequence variability in 27 different pneumococcal strains isolated worldwide. A mutant lacking Spr1875 was considerably less virulent than the wild type D39 strain in an intravenous mouse model of infection. Moreover, immunization with the R4 recombinant fragment, but not with the whole Spr1875 protein, induced significant protection against sepsis in mice. Lack of protection after immunization with the whole protein was related to the presence of immunodominant, non-protective epitopes located outside of the R4 fragment. In conclusion, our data indicate that Spr1875 has a role in pneumococcal virulence and is immunogenic. As the R4 fragment conferred immunoprotection from experimental sepsis, selected antigenic fragments of Spr1875 may be useful for the development of a pneumococcal protein-based vaccine.  相似文献   

18.
Streptococcus pneumoniae is a causative agent of otitis media, pneumonia, meningitis and sepsis in humans. For the development of effective vaccines able to prevent pneumococcal infection, characterization of bacterial antigens involved in host immune response is crucial. In order to identify pneumococcal proteins recognized by host antibody response, we created an S. pneumoniae D39 genome library, displayed on lambda bacteriophage. The screening of such a library, with sera either from infected individuals or mice immunized with the S. pneumoniae D39 strain, allowed identification of phage clones carrying S. pneumoniae B-cell epitopes. Epitope-containing fragments within the families of the histidine-triad proteins (PhtE, PhtD), the choline-binding proteins (PspA, CbpD) and zinc metalloproteinase B (ZmpB) were identified. Moreover, library screening also allowed the isolation of phage clones carrying three distinct antigenic regions of a hypothetical pneumococcal protein, encoded by the ORF spr0075 in the R6 strain genome sequence. In this work, Spr0075 is first identified as an expressed S. pneumoniae gene product, having an antigenic function during infection.  相似文献   

19.
Abstract The Staphylococcus aureus 8325-4 hyaluronate lyase gene ( hysA ) was identified after detecting hyaluronate lyase activity expressed by phages from a genomic library. The hysA open reading frame, capable of encoding a protein of 91 980 Da, was identified by Tn 5 mutagenesis and nucleotide sequencing. HysA shares 35 and 36% amino acid sequence identity with group B streptococcal hyaluronate lyase and pneumococcal hyaluronidase, respectively. A 94-kDa protein was expressed in Escherichia coli minicells, a result consistent with the coding capacity of hysA . Identification of the S. aureus 8325-4 hyaluronate lyase gene will allow the regulation of this putative virulence determinant to be studied. The nucleotide sequence data have been deposited with Genbank, accession number U21221.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号