首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neuroblastoma is the most common extracranial solid tumor in children and tumor ganglioside composition has been linked to its biological and clinical behavior. We recently found that high expression of complex gangliosides that are products of the enzyme GM1a/GD1b synthase predicts a more favorable outcome in human neuroblastoma, and others have shown that complex gangliosides such as GD1a inhibit metastasis of murine tumors. To determine how a switch from structurally simple to structurally complex ganglioside expression affects neuroblastoma cell behavior, we engineered IMR32 human neuroblastoma cells, which contain almost exclusively (89%) the simple gangliosides (SG) GM2, GD2, GM3, and GD3, to overexpress the complex gangliosides (CG) GM1, GD1a, GD1b and GT1b, by stable retroviral-mediated transduction of the cDNA encoding GM1a/GD1b synthase. This strikingly altered cellular ganglioside composition without affecting total ganglioside content: There was a 23-fold increase in the ratio of complex to simple gangliosides in GM1a/GD1b synthase-transduced cells (IMR32-CG) vs. wild type (IMR32) or vector-transfected (IMR32-V) cells with essentially no expression of the clinical neuroblastoma marker, GD2, confirming effectiveness of this molecular switch from simple to complex ganglioside synthesis. Probing for consequences of the switch, we found that among functional properties of IMR32-CG cells, cell migration was inhibited and Rho/Rac1 activities were altered, while proliferation kinetics and cell differentiation were unaffected. These findings further implicate cellular ganglioside composition in determining cell migration characteristics of tumor cells. This IMR32 model system should be useful in delineating the impact of ganglioside composition on tumor cell function.  相似文献   

2.
Botulinum neurotoxin A (BoNT/A) is the deadliest of all known biological substances. Although its toxicity makes BoNT/A a biological warfare threat, its biologic activity makes it an increasingly useful therapeutic agent for the treatment of muscular disorders. However, almost 200 years after its discovery, the neuronal cell components required for the activity of this deadly toxin have not been unequivocally identified. In this work, neuroblastoma cells expressing synaptotagmin I, a protein shown to be bound by BoNT/A, were used to determine whether specific gangliosides were necessary for BoNT/A activity as measured by synaptosomal-associated protein of 25 kDa (SNAP-25) cleavage. Ganglioside GT1b was found to support BoNT/A activity significantly more effectively than GD1a, which was far more effective than GM1 when added to ganglioside-deficient murine cholinergic Neuro 2a or to human adrenergic SK-N-SH neuroblastoma cells. Whereas both cell lines expressed synaptotagmin I, SNAP-25 cleavage was not observed in the absence of complex gangliosides. These results indicate that 1) gangliosides are required for BoNT/A activity, 2) synaptotagmin I in the absence of gangliosides does not support BoNT/A activity, and 3) Neuro 2a cells are an efficient model system for studying the biological activity of BoNT/A.  相似文献   

3.
Since exogenous gangliosides are known to promote neuritogenesis, the incorporation of exogenous GM1 into neuroblastoma membranes was examined. Neuro-2A cells, synchronized in the G1/G0 phase, were suspended in HEPES buffered saline containing 10–4 M [3H]GM1, and membrane incorporation was measured as radioactivity remaining with the cell pellet following incubation with serum-containing medium and trypsin. Calcium ion (0.01 to 10 mM) reduced incorporation of exogenous GM1, due to its interaction with GM1 micelles in solution. When cells were treated with proteases prior to incubation with GM1, the inhibitory effect of Ca2+ was lost and total incorporation into membranes was lowered by approximately one order of magnitude. Pretreatment of cells with 0.05% trypsin resulted in an inhibition of GM1 incorporation within 5 minutes. When trypsinized cells were resuspended in complete growth medium, the cells recovered the ability to incorporate GM1 with time, and this paralleled labeling of cellular protein with [3H]leucine. The role of membrane protein in the incorporation of exogenous GM1 could not be explained by the lytic release of cytosolic transfer proteins nor the artifactual coating of the cell surface by serum proteins. These results suggest that the incorporation of exogenous gangliosides into cellular membrane lipid bilayers cannot be fully explained by considerations of lipophilicity alone, and leads us to propose that initial recognition by membrane protein(s) is necessary.Abbreviations used GM1 H3NeuAc-GgOse4Cer - HBS HEPES buffered saline - DMEM Dulbecco's modified Eagle's medium - FCS fetal calf serum  相似文献   

4.
The inhibitory action of gangliosides GT1B, GD1A, GM3 and GM1 on cell proliferation and epidermal growth factor receptor (EGFR) phosphorylation was determined in the N-myc amplified human neuroblastoma cell line NBL-W. The IC50 of each ganglioside was estimated from concentration-response regressions generated by incubating NBL-W cells with incremental concentrations (5-1000 microm) of GT1B, GD1A, GM3 or GM1 for 4 days. Cell proliferation was quantitatively determined by a colourimetric assay using tetrazolium dye and spectrophotometric analysis, and EGFR phosphorylation by densitometry of Western blots. All gangliosides assayed, with the exception of GM1, inhibited NBL-W cell proliferation in a concentration-dependent manner. The IC50s for gangliosides GT1B [molecular weight (MW) 2129], GM3 (MW 1236), and GD1A (MW 1838) were (mean +/- SEM) 117 +/- 26, 255 +/- 29, and 425 +/- 44 m, respectively. In contrast, the IC50 for GM1 (MW 1547) could not be determined. Incubation of NBL-W cells with epidermal growth factor (EGF) concentrations ranging from 0.1 to 1000 ng/ml progressively increased cell proliferation rate, but it plateaued at concentrations above 10 ng/ml. EGFR tyrosine phosphorylation, however, was incrementally stimulated by EGF concentrations from 1 to 100 ng/ml. The suppression of EGF-induced EGFR phosphorylation differed for each ganglioside, and their respective inhibitory potencies were as follows: EGFR phosphorylation [area under curve (+ EGF)/area under curve (- EGF)]: control (no ganglioside added) = 8.2; GM1 = 8.3; GD1A = 6.7; GM3 = 4.87, and GT1B = 4.09. The lower the ratio, the greater the inhibitory activity of the ganglioside. Gangliosides GD1A and GT1B, which have terminal N-acetyl neuraminic acid moieties, as well as one and two N-acetyl neuraminic acid residues linked to the internal galactose, respectively, both inhibited cell proliferation and EGFR phosphorylation. However, GD1A was a more potent suppressor of cell proliferation and GT1B most effective against EGFR phosphorylation. GM3, which only has a terminal N-acetyl neuraminic acid, inhibited cell proliferation and EGFR phosphorylation almost equivalently. These data suggest that gangliosides differ in their potency as inhibitors of NBL-W neuroblastoma cell proliferation and EGFR tyrosine phosphorylation, and that perturbations in the differential expression of membrane glycosphingolipids may play a role in modulating neuroblastoma growth.  相似文献   

5.
We studied the interactions between gangliosides and proteins at the exoplasmic surface of the sphingolipid-enriched membrane domains by ganglioside photolabeling combined with cell surface biotin labeling. After cell photolabeling with radioactive photoactivable derivatives of GM3, GM1 and GD1b gangliosides, followed by cell surface biotin labeling, sphingolipid-enriched domains were prepared and immunoprecipitated with streptavidin-coupled beads, under experimental conditions preserving the integrity of the lipid domain. About 50% of the total radioactivity linked to proteins was associated with acylated tubulin, about 10% with a 135-kDa protein present as a series of species with pI ranging from 6.5 to 8.0, about 5% with a protein of about 70 kDa and with pI near to 6.5. By immunoprecipitation with streptavidin-coupled beads under conditions disrupting the integrity of the lipid domain, the 135 kDa protein was recovered in the immunoprecipitate, that did not contain tubulin. Thus, the 135 kDa protein has an exoplasmic domain, and it was then identified as the GPI-anchored neural cell adhesion molecule TAG-1. Remarkably, TAG-1 was cross-linked in a similar extent by the photoactivated ganglioside GM3, GM1 and GD1b. The three gangliosides bear different oligosaccharide chains, suggesting that the ganglioside/TAG-1 interaction is not specifically associated with the ganglioside oligosaccharide structure.  相似文献   

6.
Abstract: SH-SY5Y is a thrice cloned cell line originally derived from the human neuroblastoma cell line SK-N-SH. It grows well in serum-containing medium and undergoes neuritogenesis in response to several trophic factors. Because it has been reported that this clonal line does not have receptors for platelet-derived growth factor (PDGF), it has been unclear what the major mitogenic factor in serum is for these cells. In competitive binding studies using radiolabeled PDGF-BB, we found that SH-SY5Y cells specifically bind PDGF with a K D = 0.14 ± 0.06 n M and B max = 7.3 ± 2.3 p M . Functionality of these receptors was demonstrated by an increased [3H]-thymidine incorporation in response to PDGF (stimulation index = 2.5). At concentrations of PDGF-BB between 5 and 100 ng/ml, maximum stimulation occurred with 20 ng/ml. Maximum DNA synthesis occurred after 12–24-h exposure to PDGF. Gangliosides GM3 and GT1b greatly inhibited [3H]thymidine incorporation, which was also inhibited to a lesser extent by GM1. Phosphorylation on tyrosine of a 170-kDa protein in response to PDGF stimulation of intact cells was demonstrated by western blot analysis probing with anti-phosphotyrosine antibody. Immunoprecipitation with anti-PDGF β-receptor antibody and visualization on a western blot with an anti-phosphotyrosine antibody also revealed a 170-kDa protein. Maximum phosphorylation of the 170-kDa protein occurred after 5-min exposure to 20 ng/ml PDGF. This phosphorylation was inhibited by gangliosides GM1, GM2, GD1a, and GT1b but not by GM3. Receptor dimerization was also inhibited by GM1. These results show that SH-SY5Y cells have specific receptors for PDGF-BB that are functional, and can be modulated by gangliosides.  相似文献   

7.
The potential involvement of gangliosides in the adherence and neurite extension of human neuroblastoma cells (Platt and La-N1) was investigated on tissue culture substrata coated with the ganglioside GM1-binding protein, cholera toxin B (CTB) subunit, for comparison with similar processes on plasma fibronectin (pFN)-coated substrata. Cells attached with reduced efficiency on CTB substrata as compared with pFN substrata and required a much longer time to form neurite processes for a small percentage of cells on CTB. The specificity of these processes for GM1 binding was tested in a variety of ways. Supplementation of the cells with exogenous GM1, but not GD1a, identified a larger population of cells adherent on CTB (comparable to pFN-adherent cells) and dramatically increased the proportion of cells capable of forming neurites without reducing the time requirement. In ultrastructural studies using the scanning electron microscope (SEM) and immunofluorescence (IF) analyses to discriminate microtubule distributions, neurites of GM1-supplemented cells on CTB were virtually identical with pFN-adherent neurites, whereas unsupplemented cells on CTB generated processes with fine-structural differences. Treatment of cells during the GM1 supplementation period with cycloheximide completely abolished the ability of cells to generate neurites on CTB and decreased the adhesive capacity of cells as well; a similar treatment of cells had no adverse effect on adherence or neurite extension on pFN. The importance of one or more proteins in GM1-dependent processes was further confirmed by demonstrating the trypsin sensitivity of a cell surface component(s) required to achieve maximal attachment on CTB; in contrast, adherence and neurite extension on pFN were much more resistant to this treatment process. Therefore, these experiments demonstrate (a) that certain cell surface gangliosides are capable of mediating adherence and neurite outgrowth of human neuroblastoma cells on a suitable ganglioside-binding substratum; (b) this ganglioside dependence is cooperative with one or more cell surface proteins which can now be analysed. These results are discussed in light of the identification in ref. [16] (Exp cell res 169 (1987) 311) of a second ‘cell-binding’ domain on the pFN molecule competent for adherence and neurite extension of these neuroblastoma cells, as well as the potential role of pFN binding to a complex ganglioside on the surface of these neural tumor cells in these processes.  相似文献   

8.
Prosaposin has been recently identified as a neurotrophic factor eliciting differentiation in neuronal cultured cells (NS20Y). In this paper we investigate whether prosaposin and its active peptide (prosaptide) may modify the ganglioside pattern in neuroblastoma cells. The analysis by high performance thin layer chromatography did not reveal qualitative changes in the ganglioside pattern of NS20Y cells incubated in the presence of prosaposin, compared to control cells, but it did reveal an increase of the content of all three major resorcinol positive bands (GM3, GM2, GD1a). Cytofluorimetric and immunofluorescence microscopic analysis revealed that the increase of the ganglioside content was at the plasma membrane level. These findings suggest that the neurotrophic activity of prosaposin on NS20Y neuroblastoma cells might be mediated in part by the increase of cell surface gangliosides.  相似文献   

9.
In this report we demonstrated that cellular prion protein is strictly associated with gangliosides in microdomains of neural and lymphocytic cells. We preliminarily investigated the protein distribution on the plasma membrane of human neuroblastoma cells, revealing the presence of large clusters. In order to evaluate its possible role in tyrosine signaling pathway triggered by GEM, we analyzed PrPc presence in microdomains and its association with gangliosides, using cholera toxin as a marker of GEM in neuroblastoma cells and anti-GM3 MoAb for identification of GEM in lymphoblastoid cells. In neuroblastoma cells scanning confocal microscopical analysis revealed a consistent colocalization between PrPc and GM1 despite an uneven distribution of both on the cell surface, indicating the existence of PrPc-enriched microdomains. In lymphoblastoid T cells PrPc molecules were mainly, but not exclusively, colocalized with GM3. In addition, PrPc was present in the Triton-insoluble fractions, corresponding to GEM of cell plasma membrane. Additional evidence for a specific PrPc-GM3 interaction in these cells was derived from the results of TLC analysis, showing that prion protein was associated with GM3 in PrPc immunoprecipitates. The physical association of PrPc with ganglioside GM3 within microdomains of lymphocytic cells strongly suggests a role for PrPc-GM3 complex as a structural component of the multimolecular signaling complex involved in T cell activation and other dynamic lymphocytic plasma membrane functions.  相似文献   

10.
Adhesion of eight cell lines, derived from human gliomas of different histological types, to fibronectin, collagen I, vitronectin, and laminin was investigated in vitro. The glioma cell lines were found to attach to these substrates to different extents. Interestingly, all cell lines strongly attached to laminin. In addition, glioma cell adhesion was found to be dose dependent. Moreover, adhesion of three cell lines to fibronectin and collagen I was partially inhibited and to vitronectin completely prevented by GRGDTP peptide, indicating the involvement of integrin receptors in glioma cell adhesion. We have demonstrated, recently, that gangliosides play an important role in promoting glioma cell invasion of the reconstituted basement membrane, Matrigel, in vitro. In order to study the mechanism of action of gangliosides in this process, the role of six gangliosides (GM1, GM3, GD3, GD1a, GD1b, and GT1b) in cell adhesion to the four proteins was investigated in three cell lines. Although all gangliosides, with the exception of GM3, were found to enhance cell adhesion to these proteins to different extents, GD3 proved to be the most effective adhesion-promoting ganglioside in all three cell lines. GM3 was found to inhibit cell adhesion to the four proteins in one cell line but enhanced cell adhesion in two other cell lines. The three cell lines were found to express both GD3 and gangliosides recognised by the A2B5 antibody. Furthermore, adhesion of the three cell lines to fibronectin, vitronectin, laminin, and collagen I was inhibited by incubation with A2B5, demonstrating the involvement of intrinsic cell membrane gangliosides in adhesion of glioma cells to these proteins. Taken together with the observation that gangliosides modulate integrin receptor function, these data suggest that gangliosides may play a central role in the control of the adhesive and invasive properties of human glioma cells.  相似文献   

11.
We have studied the incorporation of [(14)C]serine and of [(3)H]sphingosine into sphingomyelin in the presence or absence of brefeldin A (BFA) in three different cell types. Administration of BFA (1 microgram/ml) to fibroblasts for 24 h increased the incorporation of label into sphingomyelin 1.5-3 fold compared with untreated controls. In contrast, BFA strongly decreased sphingomyelin biosynthesis (4-5 fold) in cerebellar neurons as well as in neuroblastoma cells. The effect of BFA on glycosphingolipid formation, however, was similar in all three cell types studied: an increased labeling of the precursor glycolipids GlcCer, LacCer, GM3 and GD3 was paralleled by a decreased formation of complex gangliosides, GM1, GD1a, GT1b and GQ1b. Our data therefore suggest that in neuronal cells sphingomyelin synthesis, like the formation of complex gangliosides, is localized primarily distal to the BFA block, in a post-Golgi compartment, most probably the trans-Golgi network, whereas in fibroblasts sphingomyelin biosynthesis is mainly localized prior to the BFA block, in the Golgi apparatus, as has been shown for LacCer, GlcCer, GM3 and GD3 synthases.  相似文献   

12.
We studied effect of gangliosides on viability of brain neurons and neuronal PC12 cell line exposed to toxic concentrations of compounds activating free radical reactions. It is found that preincubation of cerebellar granule cells and PC12 cells with micromolar concentrations of ganglioside GM1 increases statistically significantly viability of these cells submitted to inductors of oxidative stress, such as hydrogen peroxide and the Fe2+-ascorbate system However, the effect of ganglioside GM1 in the PC12 cells failed to be revealed 1–2 days after treatment of the cells with trypsin, which indicates an importance of interaction of gangliosides with surface proteins for realization of their protective action. GM1, GD1a, and other gangliosides were shown to produce the neuroprotective effect on cerebellar granule cells in the presence of toxic glutamate concentrations. Not only micro-, but also nanomolar concentrations of these gangliosides increased statistically significantly the neuronal viability, although at micromolar concentrations this effect as a rule was more pronounced. The obtained data allow suggesting that the neuroprotective action of gangliosides is determined to a considerable degree by their ability to inhibit free-radical reactions in nerve cells.  相似文献   

13.
Gangliosides located in the outer leaflet of the plasma membrane are important modulators of cellular functions. Our previous work has shown that in cultured human SK-N-MC neuroblastoma cells a sialidase residing in the same membrane selectively desialylates gangliosides with terminal sialic acid residues, causing a shift from higher species to GM1 and a conversion of GM3 to lactosylceramide. Inhibition of this sialidase by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (NeuAc2en) resulted in increased cell proliferation and a loss of differentiation markers. In this study, we examined the occurrence and function of this ganglioside sialidase in other neuronal cells. Subcellular fractionation showed the sialidase to be located in the plasma membrane of all cell lines studied. The presence of the inhibitor NeuAc2en led to a profound decrease in the amount of the differentiation marker 200 kDa/70 kDa neurofilaments and an increase in cell proliferation in the cholinergic SK-N-MC and mixed cholinergic/adrenergic SK-N-FI and SK-N-DZ neuroblastoma lines, but had little or no effect in the human adrenergic SK-N-SH and SK-N-AS and the adrenergic/cholinergic PC12 cells from rat. The influence of the inhibitor on cell behaviour was paralleled by a diminished number of cholera toxin B-binding GM1 sites. The findings demonstrate that the plasma membrane ganglioside sialidase is an important element of proliferation and differentiation control in some, but not all, neuroblastoma cells and suggest that there might be a relationship between plasma membrane sialidase activity and cholinergic differentiation.  相似文献   

14.
We have isolated and characterized glycopeptides, derived from mouse and bovine cerebral cortex cells, that inhibit protein synthesis and cell growth of normal but not transformed cells. The inhibitor binds to target cell surfaces, and gangliosides have previously been shown to influence cell sensitivity to the glycopeptides. Preincubation with 3.0 micrograms/ml ganglioside GM1 at 0 degrees C for 3 hr sensitized the mouse L-cell line to the inhibitor, as determined by protein synthesis assays. Preincubation of LM cells with ganglioside GM1 alone did not affect protein synthesis rates. In addition, the gangliosides GD1a and GM3 also sensitized the LM cells to the protein synthesis inhibitory effect of the glycopeptide inhibitor. Binding experiments were performed with 3T3 (sensitive) and LM (insensitive) cells to determine if sensitivity to the glycopeptide inhibitor was reflected in binding of the inhibitor to these cells. Binding of 125I-labeled inhibitor to 3T3 cells was maximal after 60 min at 0 degrees C and saturable at approximately 1 X 10(4) molecules/cell. Furthermore, binding of the inhibitor was dose-dependent, with half-maximal binding at 1.5-2.0 nM and saturation at 8.0-10.0 nM. Scatchard plot analysis indicated that the Kd was about 1 X 10(-9) M and that there are 1 X 10(4) receptors/cell. Binding of the inhibitor to LM cells was maximal after 30 min at 0 degrees C and saturation occurred at 5 X 10(3) molecules/cell. We then examined the possibility that gangliosides are the cellular receptor or co-receptor for the glycopeptide inhibitor. Binding of the inhibitor to ganglioside GM1 was first examined after the ganglioside had been preadsorbed to polystyrene tubes. These experiments indicated that the ganglioside did not bind the inhibitor. Ganglioside-containing liposomes from phosphatidylcholine or LM cell membrane components were also prepared; these artificial membranes did not bind appreciable amounts of the iodinated inhibitor. Competition experiments showed that the gangliosides GM1 and GD1a did not neutralize the protein synthesis inhibitory activity of the glycopeptides, indicating that gangliosides do not directly interact with the glycopeptide inhibitor. In addition, binding of the inhibitor to LM cells preincubated with ganglioside GM1 was studied. Although the binding of the inhibitor to LM cells was one-half that observed for 3T3 cells, incorporation of exogenous gangliosides into LM cells did not result in increased binding of the inhibitor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Exposure of mouse neuroblastoma cell line N4TGl to opiates or [D-Ala2,D-Leu5] enkephalin produced a naloxone-reversible inhibition of cyclic AMP synthesis and prevented, in a concentration-dependent manner, the formation of both ganglioside GM2 (GalNAc-[NeuNAc]-Gal-Glc-ceramide) from GM3 (NeuNAc-Gal-Glc-ceramide) and ganglioside GM1 (Gal-GalNAc-[NeuNAc]-Gal-Glc-ceramide) from GM2 in cell-free extracts. In contrast, the receptor-mediated elevation of intracellular cyclic AMP levels by agents such as prostaglandin E1 (in the presence of isobutylmethylxanthine) or the addition of the cyclic AMP derivatives (dibutyryl cyclic AMP) markedly stimulated the activities of UDP-GalNAc:GM3,N-acetylgalactosaminyltransferase and UDP-Gal:GM2,galactosyltransferase. An overall increase in the synthesis of gangliosides more complex than GM3 was also observed in the mouse neuroblastoma x hamster brain explant hybrid cell line NCB-20 following elevation of cyclic AMP levels by treatment with serotonin and pargyline. The data presented support the hypothesis that cyclic AMP may have a role in the regulation of sialoglycosphingolipid biosynthesis.  相似文献   

16.
Laser and neutron scattering experiments showed that in mixed micelles of ganglioside GM2 and GT1b, a membrane mimicking system, the segregation of gangliosides may occur spontaneously. Photolabeling experiments using nitrophenylazide containing ganglioside GM1 proved that gangliosides added to cells in culture enter the cell and bind to its membrane as components of microdomains, which specifically interact with a protein of about 30 kDa. This suggests that ganglioside segregation may be a natural phenomenon. Gangliosides when added to granule cells in culture led to increase in protein phosphorylation, the effect exerted being related to the amount of ganglioside molecules inserted stably into the cell lipid layer and an increase of 0.7% of the cell original ganglioside content promoted an increase of 57% in the incorporation of 32P into cell membrane proteins. From the above results a possible relationship between ganglioside segregation and involvement of ganglioside in enzyme activity control is suggested.  相似文献   

17.
《The Journal of cell biology》1984,99(5):1575-1581
Fluorescent derivatives of gangliosides were prepared by oxidizing the sialyl residues to aldehydes and reacting them with fluorescent hydrazides. When rhodaminyl gangliosides were incubated with lymphocytes, the cells incorporated them in a time- and temperature- dependent manner. Initially, the gangliosides were evenly distributed on the cell surface but were redistributed into patches and caps by antirhodamine antibodies. When the cells were then stained with a second antibody or protein A labeled with fluorescein, the fluorescein stain revealed the coincident movement of both the gangliosides and the antirhodamine antibodies. When the cells were treated with both rhodamine and Lucifer yellow CH-labeled gangliosides, the antirhodamine antibodies induced patching and capping of both fluorescent gangliosides but had no effect on cells incubated only with Lucifer yellow CH-labeled gangliosides. In addition, capping was observed on cells exposed to cholera toxin, antitoxin antibodies, and rhodamine- labeled protein A, indirectly showing the redistribution of endogenous ganglioside GM1, the cholera toxin receptor. By incorporating Lucifer yellow CH-labeled GM1 into the cells and inducing capping as above, we were able to demonstrate directly the coordinate redistribution of the fluorescent GM1 and the toxin. When the lymphocytes were stained first with Lucifer yellow CH-labeled exogenous ganglioside GM3, which is not a toxin receptor, there was co-capping of endogenous GM1 (rhodamine) and exogenous GM3 (Lucifer yellow CH). These results suggest that gangliosides may self-associate in the plasma membrane which may explain the basis for ganglioside redistribution and capping.  相似文献   

18.
The reaction sequence for the biosynthesis of gangliosides by mouse neuroblastoma cells has been investigated by studying the pattern of incorporation of labeled precursors into sialoglycosphingolipids. Cultured NB41A cells incorporated N-[3H]acetylmannosamine into the sialic acid moiety of GM3 in less than 10 min. Labeled GM2 was not detected in cells incubated for less than 30 min, while measurable radioactivity did not appear in GM1 until after 60 to 90 min. Analogous experiments were carried out using [14C]galactose. No significant amount of labeled hexose was incorporated into asialo-GM2 during 60 min of culture. These studies are in accord with results of previous studies on glycosyltransferases of NB41A cells (Kemp, S. F., and Stoolmiller, A. C. (1976), J. Neurochem. 26, 723-732), and further support the concept that the pathway of synthesis of gangliosides proceeds via GM3 leads to GM2 leads to GM1.  相似文献   

19.
Abnormalities of ganglioside structure characterize the neoplastic state, and aberrant glycosylation has been implicated as underlying many new tumor ganglioside structures. However, variations in ceramide structure can also result in novel tumor gangliosides. To address systematically this aspect of ganglioside metabolism, we have initiated a study of the structures of the ceramide species of an oligosaccharide-homogeneous human tumor-derived ganglioside, GM2. The ganglioside was isolated from neuroblastoma tissue and purified by normal-phase high pressure liquid chromatography. Marked ceramide heterogeneity was observed; 18 individual ceramide species of neuroblastoma GM2 were separated by reversed-phase high pressure liquid chromatography and collected. Their structures were determined by a combination of negative- and positive-ion fast atom bombardment mass spectrometry and collisionally activated dissociation tandem mass spectrometry of the underivatized gangliosides. The striking finding was the detection of alpha-hydroxylation of a significant fraction of each of the major fatty acid species (16:0, 18:0, 20:0, 22:0, and 24:1); alpha-hydroxylated species quantitatively represented almost one-fifth of the total tumor GM2 species. Fatty acyl hydroxylation was also detected in the ceramide of several other human tumor gangliosides. In contrast, as previously known, fatty acyl hydroxylation was not detected in the normal human brain gangliosides GM3, GM2, and GM1. We propose that aberrant fatty acid alpha-hydroxylation is a novel and sometimes quantitatively significant characteristic of human tumor ganglioside metabolism.  相似文献   

20.
Ganglioside stimulated neurite outgrowth may be due to gangliosidebinding to membrane proteins or to intercalation into the membrane.To test that ganglioside binding proteins could be found onneuronal surfaces, antiidiotypic ganglioside monoclonal antibodies(AIG mAbs) were generated to mimic the biological propertiesof the GM1 ganglioside. The AIG mAbs were identified by theirability to bind to a known GM1 binding protein, the ß-subunit of cholera toxin. For the two AIG mAbs studied, AIG5 andAIG20, binding to ß-CT was blocked most strongly byGM1. This data also suggests that AIG5 and AIG20 mimic differentbut overlapping epitopes of the ganglioside GM1. Western blottingand immunoprecipitation of mammalian tissues reveals four potentialganglioside binding proteins of molecular weight 93, 66, 57,and 45 kDa. Immunocytochemistry demonstrates neuronal surfacelabel with the AIG mAbs, which suggests that gangliosides, enrichedon the neuronal surface membrane, are co-localized with putativeganglioside binding proteins. In bioassays, the AIG mAbs promoteneuronal sprouting. This shows that these antibodies can beused to study the biological effects of ganglioside bindingto neuronal surface proteins, and the role of gangliosides inthe activation of neurite outgrowth. agonist antibody anti-idiotypic antibody gangliosides ganglioside binding proteins  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号